REGISTRATION OF GERMLAPSM LINES

Inbred H111 (Reg. No. GP122) is a yellow-kernel dent maize developed from the cross of B37 × PI 209135 selection Mb.2. The inbred was developed by pedigree selection after a backcross to B37 in the second generation to add stalk quality and root strength. It was self pollinated for eight generations with selection for disease resistance and agronomic types during each generation. H111 is resistant to *E. turgicium* Races 1 and 2, *C. graminicola* (both leaf blight and stalk rot), *E. stewartii*, *B. maydis* and *Diplodia maydis* however, its tolerance to MDMV and MCDV is similar to B37 (moderately susceptible). Stalk rot and lodging are improved relative to both parental lines.

H111 is morphologically similar to B37, but matures about 4 days earlier and the plant is about 15 cm taller than B37. The leaves are more upright and the ears are slightly larger than those of B37. Ears have 12 to 14 rows of kernels of medium depth. H111 maturity classification is AES 600.

With improved resistance to diseases, H110 and H111 are expected to be desirable breeding sources for resistance to MDMV, MCDV, leaf blights and stalk rots. Limited yield trials indicate that both inbreds have satisfactory combining ability.

Seed of H110 and H111 will be maintained by the Dep. of Botany and Plant Pathology, Purdue Univ., West Lafayette, IN 47907.

REGISTRATION OF TAM2566 SORGHUM GERMPLASM LINE1
(Reg. No. GP75)

J. W. Johnson, D. T. Rosenow, G. L. Teetes, and F.R. Miller2

The sorghum *Sorghum bicolor* (L.) Moench lines were developed cooperatively, through the Sorghum Program, by personnel of the Texas Agricultural Experiment Station and the USDA-ARS from the cross SA7536-1. Midge resistance was derived from IS12666 released in 1974 as a source of resistance to the *Diplodia* sorghica (Coquillett). It is combine height, 2 to 4 days earlier than Tx2536, and has a red pericarp. TAM2566 is a restorer in A, cytoplasm, with mildew caused by *Peronosclerospora sorghii* (Weston and Shaw) and suscetible to leaf burn by most insecticides.

In tests at Corpus Christi, Beeville, and Lubbock, TX in 1973 and 1974, TAM2566 averaged 10% seed loss compared to 34% for SGRL-MR-1 and 48% for TAM2566 has been identified as midge resistant in Australia, Brazil, India, Guatemala, Mexico, and Uruguay.

Seed will be maintained and distributed by the Texas Agric. Exp. Stn., Route 3, Lubbock, TX 79401.

REGISTRATION OF TAM2566 SORGHUM GERMPLASM LINE1
(Reg. No. GP75)

J. W. Johnson, D. T. Rosenow, G. L. Teetes, and F.R. Miller2

The sorghum *Sorghum bicolor* (L.) Moench lines were developed cooperatively, through the Sorghum Program, by personnel of the Texas Agricultural Experiment Station and the USDA-ARS from the cross SA7536-1. Midge resistance was derived from IS12666 released in 1974 as a source of resistance to the *Diplodia* sorghica (Coquillett). It is combine height, 2 to 4 days earlier than Tx2536, and has a red pericarp. TAM2566 is a restorer in A, cytoplasm, with mildew caused by *Peronosclerospora sorghii* (Weston and Shaw) and suscetible to leaf burn by most insecticides.

In tests at Corpus Christi, Beeville, and Lubbock, TX in 1973 and 1974, TAM2566 averaged 10% seed loss compared to 34% for SGRL-MR-1 and 48% for TAM2566 has been identified as midge resistant in Australia, Brazil, India, Guatemala, Mexico, and Uruguay.

Seed will be maintained and distributed by the Texas Agric. Exp. Stn., Route 3, Lubbock, TX 79401.

REGISTRATION OF TAM2566 SORGHUM GERMPLASM LINE1
(Reg. No. GP75)

J. W. Johnson, D. T. Rosenow, G. L. Teetes, and F.R. Miller2

The sorghum *Sorghum bicolor* (L.) Moench lines were developed cooperatively, through the Sorghum Program, by personnel of the Texas Agricultural Experiment Station and the USDA-ARS from the cross SA7536-1. Midge resistance was derived from IS12666 released in 1974 as a source of resistance to the *Diplodia* sorghica (Coquillett). It is combine height, 2 to 4 days earlier than Tx2536, and has a red pericarp. TAM2566 is a restorer in A, cytoplasm, with mildew caused by *Peronosclerospora sorghii* (Weston and Shaw) and suscetible to leaf burn by most insecticides.

In tests at Corpus Christi, Beeville, and Lubbock, TX in 1973 and 1974, TAM2566 averaged 10% seed loss compared to 34% for SGRL-MR-1 and 48% for TAM2566 has been identified as midge resistant in Australia, Brazil, India, Guatemala, Mexico, and Uruguay.

Seed will be maintained and distributed by the Texas Agric. Exp. Stn., Route 3, Lubbock, TX 79401.

REGISTRATION OF TAM2566 SORGHUM GERMPLASM LINE1
(Reg. No. GP75)

J. W. Johnson, D. T. Rosenow, G. L. Teetes, and F.R. Miller2

The sorghum *Sorghum bicolor* (L.) Moench lines were developed cooperatively, through the Sorghum Program, by personnel of the Texas Agricultural Experiment Station and the USDA-ARS from the cross SA7536-1. Midge resistance was derived from IS12666 released in 1974 as a source of resistance to the *Diplodia* sorghica (Coquillett). It is combine height, 2 to 4 days earlier than Tx2536, and has a red pericarp. TAM2566 is a restorer in A, cytoplasm, with mildew caused by *Peronosclerospora sorghii* (Weston and Shaw) and suscetible to leaf burn by most insecticides.

In tests at Corpus Christi, Beeville, and Lubbock, TX in 1973 and 1974, TAM2566 averaged 10% seed loss compared to 34% for SGRL-MR-1 and 48% for TAM2566 has been identified as midge resistant in Australia, Brazil, India, Guatemala, Mexico, and Uruguay.

Seed will be maintained and distributed by the Texas Agric. Exp. Stn., Route 3, Lubbock, TX 79401.