Test weights of Madison were about 0.45 kg (1 lb.) higher than those of Brooks and about 0.45 kg (1 lb.) lower than those of Coker 716. Lodging percentages were 37.5, 26.7, and 3.4 for Coker 716, Brooks, and Madison, respectively. Madison was also about 13 cm shorter than Brooks or Coker 716. It exceeded Carolee by 10% in winter survival but was 8% and 16% lower than Brooks and Coker 716, respectively. Madison exceeded the protein production of Brooks by 11% and Coker 716 by 15%. This cultivar should be widely adapted in the Southeastern states and valuable for double cropping with soybeans.

Madison has semi-prostrate juvenile plant growth and mid-sized yellow stems with pubescent internodes. Leaf blades are mid-wide and the leaf margins are glabrous. Leaf sheaths are mostly glabrous and ligules are present. Panicles are equilateral, mid-sized, mid-long, mid-broad, and ovate. The branch attitude is erect, with ascending branches. The rachis is nearly straight, spikelet separation is by semiabscission, and floret separation is by disarticulation. The lemma is very short, yellow, and glabrous. The grain is mid-plump and the second floret rachilla segment is mid-long and glabrous. There are few to several long basal hairs and non-twisted, long awns are common. The seed does not fluoresce.

The name Madison was selected to draw attention to the cooperative state-federal relationship, which is so important to agricultural research, by recognizing the value of the USDA Oat Protein Laboratory located at Madison, Wis.

Breeder seed of Madison will be maintained by the North Carolina Agriculture Research Service, North Carolina State Univ., Raleigh, NC 27650.

REGISTRATION OF PENNANT PERENNIAL RYEGRASS
(Reg. No. 83)

C. R. Funk, C. J. Petersen, S. Ahmad, and J. P. Rutkai

‘PENNANT’ perennial ryegrass (Lolium perenne L.) was developed and released by Agriculture Service Corporation of Salem, Ore. It originated from germplasm developed at the New Jersey Agricultural Experiment Station. Pennant perennial ryegrass is an advanced generation synthetic cultivar selected from the progenies of 65 related clones. Each parental clone of Pennant descended on its maternal side from one or the other of two plants selected from an old lawn in College Park, Md. These two plants were placed in polycross nurseries with plants selected primarily from NJ E R-35 (an experimental synthetic closely related to ‘Citation’), L4H (a clone selected from a school playground in Baltimore, Maryland), ‘Birdie’, and ‘Pennfine’. Polycross progenies of the two clones were seeded in closely mowed turf trials. After 11 months of interplant competition under conditions of severe heat, drought, and disease stress, tillers were selected from each progeny and transferred to a spaced-plant nursery. The 65 parental clones of Pennant were selected from this nursery based on attractive plants. UM composite was the experimental designation. The first commercial seed was produced in 1980.

Pennant is a moderately low-growing, turfable of producing an attractive, persistent, dark green color, high seed yield potential, and uniform early mowing qualities. It has performed well in non-receiving low to moderate fertility applications. It also contained somewhat less N fertilizer for good performance. The perennial ryegrasses. Pennant has shown good heat tolerance, moderately good cold hardiness. When compared to other improved ryegrasses, Pennant has shown improved resistance to the red thread disease incited by Rhizoctonia solani. It demonstrated moderate resistance to the red thread incited by Laetisaria fuciformis (McAlpine) Burdsall, and brown spot disease incited by Cercospora litoralis. The winter blight disease incited by Drechslera spp., dollar spot caused by Puccinia coronata Corda. Pennant has substantially less damage from sod webworms, Cutellogers, Sphenophorus parvulus Gyllenhal, in Philadelphia, New Jersey, compared with most other new cultivars.

Pennant has the rapid germination, ease of establishment, wear tolerance, and wide soil adaptation which are characteristic of other improved ryegrasses. It is recommended for use in light shade on lawns, parks, or in light to moderate shade on lawns, parks, or golf greens, tee, lawns, and fairways. It is tolerant of dormancy Bermudagrass on golf greens, tees, fairways, and in dormant bermudagrass on golf greens, tees, fairways, and in dormant bermudagrass on golf greens, tees, fairways.

Breeder seed is produced by Agriculture Service Corporation with the cooperation of the New Jersey Agricultural Experiment Station. Three generations of increase beyond breeder seed are permitted, one each of foundation, registered, and elite.

Application (number 8000141) has been made to the Plant Variety Protection Office.

Acknowledgments

Some of this work was performed as part ofaffle Project No. 15166, supported by New Jersey Agric. Experiment Station grants and gifts. Additional support was received from the United States Golf Assoc. Green Section Res. and Educ.

REGISTRATION OF NC 8C PEANUT
(Reg. No. 27)

J. C. Wynne and M. K. Beute

‘NC 8C’ peanut (Arachis hypogaea L. subsp. hypogaea) is a virginia market-type cultivar developed by the North Carolina Agriculture Research Service. It originated from the cross of NC Ac 3139 and the cultivar ‘Florican giant’. The cross was made in reciprocal in 1980.

The first crop was grown in 1981 and the cultivar was subsequently evaluated in tests in North Carolina in 1978-1981, in the Virginia-North Carolina Peanut Variety and Quality Evaluation Program. It is capable of producing an attractive, persistent, dark green turf having uniformly spaced, mid-size, mid-long, mid-broad, and ovate leaves. The leaf margins are glabrous. Leaf sheaths are mostly glabrous and the ligules are present. Panicles are equilateral, mid-sized, mid-long, mid-broad, and ovate. The branch attitude is erect, with ascending branches. The rachis is nearly straight, spikelet separation is by semiabscission, and floret separation is by disarticulation. The lemma is very short, yellow, and glabrous. The grain is mid-plump and the second floret rachilla segment is mid-long and glabrous. There are few to several long basal hairs and non-twisted, long awns are common. The seed does not fluoresce.

The name Madison was selected to draw attention to the cooperative state-federal relationship, which is so important to agricultural research, by recognizing the value of the USDA Oat Protein Laboratory located at Madison, Wis.

Breeder seed of Madison will be maintained by the North Carolina Agriculture Research Service, North Carolina State Univ., Raleigh, NC 27650.