The cultivar is moderately resistant to the CBR disease. NC 8C also has some resistance to southern stem rot caused by Sclerotium rolfsii Sacc.

NC 8C has a plant type and runner growth habit similar to that of Florigiant. It is also similar to Florigiant in maturity requiring approximately 140 to 150 days to mature in the Virginia- Carolina production area. Yields of NC 8C are similar to Florigiant in fields not containing CBR, but are from one-third to one-half greater than Florigiant in CBR-infested fields. Fruits and seeds of NC 8C are smaller than Florigiant and in some environments the new cultivar will not produce the 40% fancy sized pods required for the Virginia market type. Florigiant averaged 30% extra large kernels to 18% for NC 8C in tests conducted in North Carolina and Virginia. The seeds also tend to be somewhat more rounded in shape than those of Florigiant.

Seeds of NC 8C contain 49% oil, have an oleic:linoleic ratio of 1.84 and an iodine number of 97 compared to 46% oil, a 1.56 oleic:linoleic ratio and an iodine number of 101 for Florigiant. Seeds of NC 8C produce more splits than those of Florigiant when processed. Because of smaller fruit and seed sizes and the splitting when processed, NC 8C is recommended only for production areas infected with CBR.

Seeds of NC 8C are smaller than Florigiant when grown under dryland conditions and a short season (averaging 140 days in Oklahoma). The cultivar is adapted to most of the wheat producing areas of the Pacific Northwest. It was compared in replicated trials for 2 years in seven locations in Oregon, Washington, and Idaho where it equaled Dwarf Essex with an average seed yield of 2,843 kg/ha.

Breeder seed will be maintained by the Oklahoma Agric. Exp. Stn. Foundation seed will be produced under the direction of the Oklahoma Foundation Seed Stocks, Inc., Oklahoma State Univ., Stillwater, OK 74078. Foundation seed is also available from the Georgia Seed Development Commission, 920 W. Whitehall Rd., Athens, GA 30605. Production of certified seed will be limited to three generations from breeder seed, namely, foundation, registered, and certified classes.

Acknowledgments

Thanks are expressed to Eric Stone, formerly of the Mayaguez Inst. of Trop. Agric., and Aubrey Mixon, Tifton, Ga., for assisting with the winter increases in Puerto Rico. Appreciation is also expressed to Jim Davidson and Jack Pearson, National Peanut Res. Lab., Dawson, Ga., for evaluating the shelling and organoleptic characteristics of Pronto.

REGISTRATION OF INDORE RAPESEED

(Reg. No. 4)

Wheeler Calhoun, G. D. Jolliff, and J. M. Crane

`Indore' rapeseed (Brassica napus L. ssp. oleifera (Metzg.) Sinsk. L. biennis) originated as an F, selection from a cross of 'Brongowski' × 'Gorczanski' made in the spring of 1970. This cultivar was developed and released by Oregon State Agricultural Experiment Station, Corvallis, Ore. At the time of its release in 1981, Indore was designated as ORB 78-253.

The seeds of Indore, which average 40% in oil content, are a source of high erucic acid for industrial utilization. The defatted seed meal, which has an average of 25% protein but is low in glucosinolates, is usable for animal feeding. The average erucic acid level of the oil from this cultivar is 55.6% (range of 100 plants 53.0 to 60.0%, standard deviation 1.7). The average glucosinolate level of the defatted meal is 0.7% (range of 100 plants, 0.5 to 0.9%, standard deviation 0.16). The high erucic acid content of this vegetable oil makes it valuable for industrial utilization rather than as an edible oil. Rapeseed oil which contains levels of erucic acid greater than 50 percent can be utilized directly for many industrial purposes without having to be fractionated. Because the defatted meal from Indore contains less than 1% glucosinolates, higher levels of this meal can be used in formulated feeds for livestock without causing adverse metabolic effects on animals or poultry.

The plants of Indore are very similar to other B. napus winter annual cultivars grown under similar conditions. The mature plant is 150 to 180 cm tall, the flowers have large yellow petals with six stamens, stems and leaves are entirely glabrous and leaves are bluish green in color with waxy surface and are irregularly lobed. The life cycle duration ranges from 220 to 240 days depending upon planting date in the fall. Indore requires vernalization for seed production. Seeds are globose with a dark brown seed coat and are borne in two carpels of the silique separated by a false septum. The siliques are 5 to 6 cm in length containing 22 to 26 seeds. The seed size for Indore is an average of 4.56 gram/1000 seed. There is less than 1% seed shattering of Indore if sown late just prior to the time that all silique turn a light brown color.

Indore is adapted to most of the wheat producing areas of the Pacific Northwest. It was compared in replicated trials for 2 years in seven locations in Oregon, Washington, and Idaho where it equaled Dwarf Essex with an average seed yield of 2,843 kg/ha.

Acknowledgments

Thanks are expressed to Eric Stone, formerly of the Mayaguez Inst. of Trop. Agric., and Aubrey Mixon, Tifton, Ga., for assisting with the winter increases in Puerto Rico. Appreciation is also expressed to Jim Davidson and Jack Pearson, National Peanut Res. Lab., Dawson, Ga., for evaluating the shelling and organoleptic characteristics of Pronto.

REGISTRATION OF INDORE RAPESEED

(Reg. No. 4)

Wheeler Calhoun, G. D. Jolliff, and J. M. Crane

`Indore' rapeseed (Brassica napus L. ssp. oleifera (Metzg.) Sinsk. L. biennis) originated as an F, selection from a cross of 'Brongowski' × 'Gorczanski' made in the spring of 1970. This cultivar was developed and released by Oregon State Agricultural Experiment Station, Corvallis, Ore. At the time of its release in 1981, Indore was designated as ORB 78-253.

The seeds of Indore, which average 40% in oil content, are a source of high erucic acid for industrial utilization. The defatted seed meal, which has an average of 25% protein but is low in glucosinolates, is usable for animal feeding. The average erucic acid level of the oil from this cultivar is 55.6% (range of 100 plants 53.0 to 60.0%, standard deviation 1.7). The average glucosinolate level of the defatted meal is 0.7% (range of 100 plants, 0.5 to 0.9%, standard deviation 0.16). The high erucic acid content of this vegetable oil makes it valuable for industrial utilization rather than as an edible oil. Rapeseed oil which contains levels of erucic acid greater than 50 percent can be utilized directly for many industrial purposes without having to be fractionated. Because the defatted meal from Indore contains less than 1% glucosinolates, higher levels of this meal can be used in formulated feeds for livestock without causing adverse metabolic effects on animals or poultry.

The plants of Indore are very similar to other B. napus winter annual cultivars grown under similar conditions. The mature plant is 150 to 180 cm tall, the flowers have large yellow petals with six stamens, stems and leaves are entirely glabrous and leaves are bluish green in color with waxy surface and are irregularly lobed. The life cycle duration ranges from 220 to 240 days depending upon planting date in the fall. Indore requires vernalization for seed production. Seeds are globose with a dark brown seed coat and are borne in two carpels of the silique separated by a false septum. The siliques are 5 to 6 cm in length containing 22 to 26 seeds. The seed size for Indore is an average of 4.56 gram/1000 seed. There is less than 1% seed shattering of Indore if sown late just prior to the time that all silique turn a light brown color.

Indore is adapted to most of the wheat producing areas of the Pacific Northwest. It was compared in replicated trials for 2 years in seven locations in Oregon, Washington, and Idaho where it equaled Dwarf Essex with an average seed yield of 2,843 kg/ha.

Acknowledgments

Thanks are expressed to Eric Stone, formerly of the Mayaguez Inst. of Trop. Agric., and Aubrey Mixon, Tifton, Ga., for assisting with the winter increases in Puerto Rico. Appreciation is also expressed to Jim Davidson and Jack Pearson, National Peanut Res. Lab., Dawson, Ga., for evaluating the shelling and organoleptic characteristics of Pronto.