eraged 3027 kg seed cotton/ha; whereas, MOHG averaged 2591. The composite, MHR-1, thus has higher yield than MOHG and has retained much of the resistance of MOHG to tobacco budworm. We do not know the mechanism of resistance.

Seed released as MHR-1 is a composite of equal amounts of seed from the above nine lines in the F7 generation. Small amounts of seed are available for distribution to cotton geneticists and other research workers. Written requests should be addressed to J.N. Jenkins, Crop Science Res. Lab., P.O. Box 5367, Mississippi State, MS 39762.

References and Notes

2. Suppenfield, W.P. Missouri Agric. Exp. Stn., Delta Ctr., P.O. Box 160, Portageville, MO 65733.

REGISTRATION OF GT-R14 MAIZE GERMPLASM

The flint and dent maize (Zea mays L.) synthetic GT-R14 (Reg. no. GP128) was developed by index selection, within the base population RFC, specifically for its resistance to ear feeding by the corn earworm, Heliothis zea (Boddie). RFC was derived from crosses of (B10 × B14), Manfredi (Argentina), and CBC (Corn Belt Composite) with more than 30 Latin American selections ranging in latitude of adaptation from Panama to Cuba. GT-R14 is the result of four cycles of recurrent selection using a selection index involving corn earworm damage, husk extension and tightness, and plant maturity, with the least emphasis on husk extension and plant maturity (1). At least 250 S1 progenies were evaluated during each selection cycle, and 10% of the best performing S1’s were recombined from remnant seed to form the successive cycle’s population. Compared with GT-CEW-RS8, a mid-season dent synthetic population previously released as a source of resistance to damage by the corn earworm, GT-R14 averaged 1.7 cm less ear penetration, 2 days earlier maturity, 1.8 cm shorter husk extension, 8% tighter husks, 15 cm shorter plant height, 4 cm lower ear placement, 4% more lodging, 0.14 more ears/plant, and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality. Greater prolificacy may have contributed to the 0.5 to 1.5 Mg ha−1 and was equal in grain quality.

Seed of each clone represented in this improved material available to breeders with active breeding projects or to fine tune the germplasm. Research geneticist and research entomologists, Southern Grain Insects Res. Lab., USDA-ARS, Tifton, Ga. Contribution of USDA-ARS in co-operation with the Univ. of Georgia College of Agriculture, Coastal Plain Exp. Stn., Tifton, GA 31798-0748. Registration by the Crop Sci. Soc. of Am. Accepted 8 Dec. 1983.

REGISTRATION OF AU 1 PHALARIS

AU 1 Phalaris (Reg. no. GP26) is an open pollinated population of Phalaris aquatica L. that was derived from clones which were selected for persistent adaptation to the conditions common to the southern United States. It was released in August 1983 by the Alabama Agricultural Experiment Station.

The 36 clones were selected from 3630 spaced plants each of 121 PI accessions that were harvested in the Auburn University Plant Breeding Unit in the fall of 1969. One hundred four clones were selected for superior persistence, adaptation, and vigor in 1972. In the fall of 1973, these were divided into ramets and transplanted in a replicated (4X) nursery at a location. In 1980, these clones were reselected for persistence, characteristics and the 36 judged superior were selected to form an isolation block with four replications and allowed to open pollinate. Except where noted, these clones were single plant selections from the following PI accessions: PI 193056, PI 196338, PI 202394, PI 206710, PI 207961, PI 207962, PI 207963 (2 plants selected), PI 207964, PI 219636, PI 223182 (3 plants selected), PI 223183, PI 223184, PI 223185, PI 236543, PI 236545, PI 240227 (2 plants selected), PI 240229, PI 240233, PI 240237, PI 240272, PI 240276, PI 240278, PI 240283, PI 284202 (3 plants selected), PI 284204, PI 284205, PI 284206, PI 284208, PI 284209, PI 284218, PI 284243 (2 plants selected), PI 294263, PI 302437, PI 304605, and PI 308605, (an old Auburn University PI nursery).

Seed of each clone represented in this improved material available to breeders with active breeding projects or to fine tune the germplasm. Acquired through the efforts of Mrs. A. L. Thal, research geneticist and research entomologist, Southern Grain Insects Res. Lab., USDA-ARS, Tifton, Ga. Contribution of USDA-ARS in co-operation with the Univ. of Georgia College of Agriculture, Coastal Plain Exp. Stn., Tifton, GA 31798-0748. Registration by the Crop Sci. Soc. of Am. Accepted 8 Dec. 1983.