4 of \textit{P. megasperma} f. sp. \textit{glycinea} and surviving plants were backcrossed to Beeson 80. This process was repeated for six successive backcrosses. \textit{F}_3 plants of Beeson 80 × \textit{PRX9-249} were inoculated with race 4 of the pathogen and surviving plants were grown to maturity. Seeds from 91 \textit{F}_3 plants were planted 10 cm apart in rows 1 m apart in the field in 1981. The \textit{F}_4 lines that appeared phenotypically identical to Beeson 80 were harvested individually and progeny from each line were tested for reaction to races 4 and 7 of \textit{P. megasperma} f. sp. \textit{glycinea}. Thirty-three lines that were homozygous resistant in their reaction to the above races, indicating they contained the genes \textit{Rps}_4 and \textit{Rps}_7, were composed and evaluated as Beeson 80 \textit{BC}_3 in the Uniform Soybean Tests Northern States in 1982. These tests were conducted by research workers in ARS-USDA and in cooperating state experiment stations in Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Nebraska, New Jersey, Ohio, Pennsylvania, South Dakota, Wisconsin, and in Ontario, Canada. Keller was released in Indiana and Ohio in August, 1983.

Keller is very similar to Beeson 80 in agronomic characteristics and in chemical composition of the seed. Both cultivars have purple flowers, gray pubescence, brown pods at maturity and yellow seeds with imperfect black hilum. Seeds of Keller appear to be shinier than those of Beeson 80. Keller has a seedling emergence score of 2, indicating seedling emergence superior to that of Beeson 80, which has a score of 5. Since Keller has the \textit{Rps}_7 gene from Beeson 80 and the \textit{Rps}_4 gene from PI 86972-1, it is resistant to races 1 through 11, 13 through 18 and 21 of \textit{P. megasperma} f. sp. \textit{glycinea}. Keller is adapted to production in those areas where Group II soybean cultivars have been successfully grown.

Foundation seed of Keller was produced by releasing states in 1982, and publicity was released on 1 Aug. 1983. The Purdue University Agricultural Experiment Station will maintain breeder seed.

K. L. Athow, F. A. Laviolette, J. R. Wilcox, and T. S. Abney (2)

References and Notes
1. This research was supported in part by a grant from the Indiana Crop Improvement Assoc.

REGISTRATION OF NC 50 SUGARCANE

\textbf{Clone 'H73-6110' (Reg. No. 64) SUGARCANE (Saccharum spp. hybrid)} was selected by the staff of the Experiment Station, Hawaiian Sugar Planters' Association, from progeny derived from random pollination of 'H50-7209' (2) in a polycross involving many clones adapted to the irrigated Hawaiian ecological region. \textit{H73-6110} contains germplasm from \textit{S. officinarum} L., \textit{S. spontaneum} L., \textit{S. sinense} from \textit{P. megaesperma} f. sp. \textit{glycinea} and \textit{S. rieti ex Grassl.}. It is is resistant to both races of culmilocious smut (caused by \textit{Ustilago scitaminea} Syd.) present in Hawaii, brown spot (caused by \textit{Cercospora longipes} Butler), eye spot (caused by \textit{Bipolaris sacchari} (Butler) Shoemaker), and pokkah boeng (caused by \textit{Cibberella monitormiformis} Wineland). It is moderately resistant to leaf scald (caused by \textit{Xanthomonas albilineans} (Ashby) Dowson) and common rust (caused by \textit{Puccinia melanocephala} H. & P. Syd.), and moderately susceptible to ring spot (caused by \textit{Leptosphaeria sacchari} B. de Haan). Vegetative cuttings will be maintained by the Exp. Stn., Hawaiian Sugar Planters' Assoc., Aiea, HI 96701.

\textbf{References and Notes}
3. Vice president-director; head, Genetics and Pathology Dep.; associate plant breeders, respectively, Exp. Stn., Hawaiian Sugar Planters' Assoc., Aiea, Hawaii 96701. Registration by the Crop Sci. Soc. of Am. Published with the approval of the Director as Paper no. 554 in the Journal Series of the Exp. Stn., Hawaiian Sugar Planters' Assoc. Cultivar development supported in part with funds provided by USDA-ARS Cooperative Agreement no. 58-9AHZ-0-492. Accepted 2 Feb. 1984.

REGISTRATION OF NC 50 TOBACCO

'\textbf{NC 50}’ is a \textit{flue-cured} tobacco cultivar, \textit{(Nicotiana tabacum L.) (Reg. no. 91),} developed and released cooperatively by the USDA-ARS and the North Carolina Agricultural Research Service. It was tested as breeding line NC 9150 USDA in the North Carolina Official Variety Test in 1980 (3) and as NC 50 USDA in the same test in 1982 and 1983 (1,2). It was tested in the Flue-Cured Tobacco Regional Small Plot Test in 1981 and 1982; and the Regional Farm Test in 1982. NC 50 resulted from a cross of breeding lines 5140 × 5116. Breeding line 5140 was an \textit{F}4 selection from the cross of flue-cured cultivars 'Speight G-28' and 'Coker 347'. Line 5116 was an \textit{F}1 between cultivars 'McNair 944' and 'Coker 411'. NC 50 was in the \textit{F}9 generation at the time of its release in 1983 and it will be in the \textit{F}9 generation when planted by growers in 1984.

NC 50 was developed by a pedigree system of breeding in which initial screening was for field type and total alkaloid level. Greenhouse and field screening were then utilized to identify disease resistance levels and final selections were based on yield and quality trials and further disease testing. NC 50 has high resistance to black shank caused by \textit{Phytophthora parasitica} f. \textit{nicotianae} (Breda de Haan) Tucker and moderate resistance to bacterial wilt caused by \textit{Pseudomonas solanacearum} F.F. Smith. It is also resistant to the common strain of the Southern Root-Knot Nematode, \textit{Meloidogyne}