germplasm contributes to the development of a new cultivar or hybrid. Submit seed requests to the Dep. of Agronomy, Univ. of Nebraska, Lincoln, NE 68583.


References and Notes

1. Research agronomist (retired), USDA-ARS, and professor of agronomy, Dep. of Agronomy, Univ. of Nebraska, Lincoln, NE 68583; research geneticist and research plant pathologist (retired), USDA-ARS, Univ. of Minnesota, St. Paul, MN 55108; and research entomologist, USDA-ARS, and professor of entomology, Dep. of Entomology, Univ. of Nebraska. Published with the approval of the director of the Nebraska Agric. Exp. Stn. as Journal Article no. 7248. Registration by the Crop Sci. Soc. of Am. Accepted 24 Apr. 1984.

REGISTRATION OF N.S. 83, N.S. 84, N.S. 85, N.S. 89, N.S. 90, AND N.S. 91 ALFALFA GERMLASMS THAT INVOLVE FOREIGN PLANT INTRODUCTIONS

N.S. 83 (Reg. no. GP 172), N.S. 84 (GP 173), N.S. 85 (GP 174), N.S. 89 (GP 175), N.S. 90 (GP 176), and N.S. 91 (GP 177) winter-hardy alfalfa germplasms (Medicago sativa L.) were released by the Nebraska Agricultural Experiment Station and USDA-ARS 6 Mar. 1984. They provide germplasm that involves foreign plant introductions.

N.S. 83 was developed by hand-crossing at random among 54 plants (one to three plants from each of 29 Plant Introductions) that were above average in vigor and erect fall growth habit in November 1978 in a nursery established at the Mead Field Laboratory, Mead, NE, in 1976.

N.S. 84 was developed by hand-crossing each of the 54 parental plants of N.S. 83 as female parents with each of five plants chosen at random as male parents from Phytophthora root rot (caused by Phytophthora megasperma Drechs. f. sp. medicaginis Kuan and Erwin) resistant plants selected at the Minnesota Agricultural Experiment Station from three broad-based Nebraska synthetics (N.S. 77, N.S. 78, and N.S. 79 SN2AN3) developed for resistance to stem nematode [Ditylenchus dipsaci (Kühn) Filipjiv] and anthracnose (caused by Colletotrichum trifolii Bain) in cooperation with the Nevada Agricultural Experiment Station.

N.S. 85 was developed by interpollination among 20 seedling plants from each of 37 Plant Introductions that had the highest vigor and stand in June 1977 at the Regional Plant Introduction Station, Ames, IA, in plots transplanted from 1973 to 1977.

N.S. 89, N.S. 90, and N.S. 91 were developed by hand-crossing ‘Paine’ (a variety developed in Argentina with high resistance to pea aphid [Acyrthosiphon pisum (Harris)]) and seedling plants from each of 37 Plant Introductions that were above average in vigor and erect fall growth habit in November 1978. N.S. 89 and N.S. 90 were developed in a nursery established at the Mead Field Laboratory, Mead, NE, in 1976.

Ten grams of seed of N.S. 83, N.S. 84, N.S. 85, N.S. 89, N.S. 90, and N.S. 91 are available to each applicant upon written request and agreement to appropriately recognize its source as a matter of open record when this germplasm contributes to the development of a new cultural variety. Submit seed requests to the Dep. of Agronomy, Univ. of Nebraska, Lincoln, NE 68583.

W. R. KEHR AND G. R. MANGLITZ (1)

References and Notes

1. Research agronomist (retired), USDA-ARS and professor of agronomy, Dep. of Agronomy, and research entomologist, US Depart of Entomology, Univ. of Nebraska, Lincoln, NE 68583. Published with the approval of the director of the Nebraska Agric. Exp. Stn. as Journal Article no. 7250. Registration by the Crop Sci. Soc. of Am. Accepted 24 Apr. 1984.

REGISTRATION OF N.S. 76 P2PA1 AND N.S. 86 ALFALFA GERMLASMS RESISTANT TO POTATO LEAFHOPPER YELLOWING

N.S. 76 P2PA1 (Reg. no. GP 178) and N.S. 86 (Reg. no. GP 179) winter-hardy alfalfa germplasms (Medicago sativa L.) were released by the Nebraska Agricultural Experiment Station and USDA-ARS 6 Mar. 1984. They provide resistance to potato leafhopper yellowing [caused by Empoasca fabae (Harris)] and seed yield in 1970. Two cycles of phenotypic recurrent selection were performed, and five plants chosen at random as male parents from Phytophthora megasperma Drechs. f. sp. medicaginis Kuan and Erwin) resistant plants selected at the Minnesota Agricultural Experiment Station from three broad-based Nebraska synthetics (N.S. 77, N.S. 78, and N.S. 79 SN2AN3) developed for resistance to stem nematode [Ditylenchus dipsaci (Kühn) Filipjiv] and anthracnose (caused by Colletotrichum trifolii Bain) in cooperation with the Nevada Agricultural Experiment Station.

N.S. 76 was developed by interpollination among 20 seedling plants from each of 37 Plant Introductions that had the highest vigor and stand in June 1977 at the Regional Plant Introduction Station, Ames, IA, in plots transplanted from 1973 to 1977.

N.S. 89, N.S. 90, and N.S. 91 were developed by hand-crossing ‘Paine’ (a variety developed in Argentina with high resistance to pea aphid [Acyrthosiphon pisum (Harris)]) and seedling plants from each of 37 Plant Introductions that were above average in vigor and erect fall growth habit in November 1978. N.S. 89 and N.S. 90 were developed in a nursery established at the Mead Field Laboratory, Mead, NE, in 1976.

Ten grams of seed of N.S. 83, N.S. 84, N.S. 85, N.S. 89, N.S. 90, and N.S. 91 are available to each applicant upon written request and agreement to appropriately recognize its source as a matter of open record when this germplasm contributes to the development of a new cultural variety. Submit seed requests to the Dep. of Agronomy, Univ. of Nebraska, Lincoln, NE 68583.

W. R. KEHR AND G. R. MANGLITZ (1)

References and Notes

1. Research agronomist (retired), USDA-ARS and professor of agronomy, Dep. of Agronomy, and research entomologist, US Depart of Entomology, Univ. of Nebraska, Lincoln, NE 68583. Published with the approval of the director of the Nebraska Agric. Exp. Stn. as Journal Article no. 7250. Registration by the Crop Sci. Soc. of Am. Accepted 24 Apr. 1984.