mately 400 parent plants in field isolation near Columbia, MO, with pollination by honey bees (Apis mellifera L.). Breeder seed was produced in field isolation near Salem, OR, with a sufficient quantity for the expected life of the cultivar held in controlled storage. Seed production is limited to one generation each of breeder, foundation, and certified classes. Production of these seed classes is limited to the northern area of adaptation. Foundation seed may not be produced in the seedling year. A maximum of two harvest years is permitted on stands producing foundation or certified seed.

Flare was favorably reviewed by the National Certified Miscellaneous Legume Variety Review Board in 1983. Application for a plant variety protection certificate has been made.

J. B. Moutray and J. H. Harding (1)

References and Notes
1. Director of Forage Research, Nickerson American Plant Breeders, R. R. #3, Ames, IA 50010 and former assistant plant breeder, Corvallis, OR, respectively. Registration by the Crop Sci. Soc. of Am. Accepted 11 Jan. 1985.

REGISTRATION OF ‘MORRED’ RED CLOVER

MORRED red clover (Trifolium pratense L.) (Reg. no. 20) was developed by Nickerson American Plant Breeders. The experimental designation was NAPB 7801.

‘MorRed’ was selected from the cv. Arlington. Beginning in 1977, Arlington was subjected to two cycles of greenhouse selection for resistance to southern anthracnose (caused by Colletotrichum trifolii Bain). Survivors of the second cycle of selection were transplanted to a field nursery at Brookston, IN, where, after further selection for vigor and general desirability, seven plants were chosen as parents of MorRed.

MorRed is similar to Arlington in growth habit and persistence. MorRed tends to flower less than Arlington in the year of seeding and in the fall on older stands. Flower color is approximately 61% medium pink, 25% light pink, and 14% dark pink, using the Munsell Color System. MorRed has resistance to northern anthracnose [caused by Kabatiella caulivora (Kirchn.) Karak.], southern anthracnose, and powdery mildew (caused by Erysiphe polygoni DC). MorRed has been tested in the north central and east central regions and is intended for use in these general areas for grazing or hay production.

Prebreeder seed (Syn 1) was produced on 12 parent clones under field isolation with pollination by honey bees (Apis mellifera L.). Breeder seed was produced in field isolation with a sufficient quantity for the expected life of the cultivar held in controlled storage. Seed production is limited to one generation each of breeder, foundation, and certified classes. Production of these seed classes is limited to the northern area of adaptation. Foundation seed may not be produced in the seedling year. A maximum of two harvest years is permitted on stands producing foundation or certified seed.

Redland II red clover (Trifolium pratense L.) (Reg. no. 21) was developed by Nickerson American Plant Breeders. The experimental designation was NAPB ‘7801.

‘Redland II’ was selected from the cv. Redland. Beginning in 1972, Redland was subjected to selection in the greenhouse for resistance to northern anthracnose [caused by Kabatiella caulivora (Kirchn.) Karak.] and powdery mildew (caused by Erysiphe polygoni DC.). Several hundred plants from the second cycle were transplanted to a field nursery, and numerous, relatively disease-free plants were chosen as parents of Redland II.

Redland II is similar to Redland in percentage of plants flowering in year of seeding (45%). Approximately 79% of the plants have central leaf markings, a trace have apical markings, and a few have no markings. Flower color is approximately 74% dark pink, 17% medium pink, and 9% light pink, using the Munsell Color System. Redland II was resistance to southern anthracnose (caused by Colletotrichum trifolii Bain), northern anthracnose and powdery mildew. Redland II has been favorably reviewed by the National Certified Miscellaneous Legume Variety Review Board in 1983. Application for a plant variety protection certificate has been made.

J. B. Moutray and...