REGISTRATION OF CROP CULTIVARS

Breeders seed will be maintained by the Eastern Agricultural Research Center, P.O. Box 393, Sidney, MT 59270.


References and Notes


Published in Crop Sci. 27:610–611 (1987).

REGISTRATION OF ‘CHAMBERLAIN’ SOYBEAN

‘CHAMBERLAIN’ soybean [Glycine max (L.) Merr.] (Reg. no. 194) was developed by the Illinois Agricultural Experiment Station. It was released (August 1986) because of its resistance to brown stem rot [caused by Phialophora gregata (Altington and Chamberlain) W. Gams.] and superiority in seed yield to cultivars of similar maturity.

Chamberlain originated as a F₁ plant selection at the Illinois Agricultural Experiment Station from the cross A76-304020 × Land O’Lakes’ ‘Max’ made at the Iowa Agriculture and Home Economics Experiment Station. A76-304020 is a brown stem rot resistant line selected from the cross (‘Beeson’ × AP68-1016) × (L15 × ‘Calland’). AP68-1016 was selected from a line moderately resistant to brown stem rot from the cross ‘Clark’ × PI84946-2. L15 is a high-yielding line selected from the cross Wayne × ‘Clark 63’. Max is from the cross of [Wayne × (Clark × ‘Adams’)] × ‘Cutter’. The F₂ and F₃ generations were advanced at the Iowa Agriculture and Home Economics Experiment Station by single-seed descent. Chamberlain was evaluated as LN80-8478 in Illinois for brown stem rot resistance and agronomic performance during 1981 through 1985. It was evaluated in the Uniform Soybean Tests, Northern States; Preliminary Test IV in 1983, and Uniform Test III in 1984 and 1985.

Chamberlain is classified as Maturity Group III averaging 3 days later in maturity than ‘Harper’ and 2 days earlier than ‘Williams 82’. It is best adapted to approximately 40 to 42° N. Lat. In comparison with Harper, Chamberlain averages 3% higher seed yield in the absence of brown stem rot, 12 cm taller mature plant height, 1.2 g/100 seeds higher seed weight, 0.6 percentage units higher protein, and 1.0 percentage unit lower oil.

Chamberlain was classified as highly resistant to brown stem rot when inoculated in the greenhouse with the Type 1 isolate of Phialophora gregata (1). When brown stem rot develops seed will be maintained by the Illinois Agricultural Experiment Station, Urbana.

C. D. NICKELL, S. A. SEBASTIAN, D. J. THOMAS, AND L. GRAY (2)

Published in Crop Sci. 27:610–611 (1987).

REGISTRATION OF ‘SHERMAN’ SOYBEAN

‘SHERMAN’ soybean [Glycine max (L.) Merr.] was developed by the Ohio Agricultural Research and Development Center of the Ohio State University (OSU). It was released in 1985 because of its high yield, adaptability, and resistance to several important diseases.

Sherman originated as an F₁ plant selection from the two parent cross ‘A72-512’ (2) × ‘Pella’ (1). A72-512 is an Iowa derived line, which became Sherman, was evaluated in 1976 at the Isabela Substation of the Puerto Rico Agricultural Experiment Station of the University of Puerto Rico. The subsequent generations, advanced by single seed descent to the F₅ generation, except the F₅ population were grown in Puerto Rico. The F₅ population was grown in 1976 at the Puerto Rico Agricultural Experiment Station at Aguada, Puerto Rico, and in 1977 at the Puerto Rico Agricultural Experiment Station at Mayaguez, Puerto Rico. The F₅ population was grown in 1978 at the Branch Stations of the OARDC-OSU, from 1978 to 1979 as AX-1751E-19, and from 1981 to 1984 as HW8067.

As HW8067, Sherman was tested in the Uniform Soybean Tests, Northern States from 1981 through 1984.

Sherman has white flowers, gray pubescence, brown pods, and shiny yellow seeds with buff hilum. It is a Maturity Group III soybean, and is generally adapted from 39 to 41° N. Lat. In comparison with ‘Harper’, Sherman averages 4% higher in seed yield, 5 cm shorter in mature plant height, 18% lower in 100-seed weight, and 0.9 percentage units higher in oil content. The two cultivars are similar in maturity, quality, and disease resistance. Sherman is resistant to bacterial blight [caused by Xanthomonas phaseoli pv. phaseoli (Smith) Dye], resistant to brown spot [caused by Cercospora sojina (Coerper) Young, Dye & Wilkie], and bacterial pustule [caused by Pseudomonas syringae pv. glycinea (EC. Co.)].

References and Notes


2. Professor of plant genetics, former graduate research associate, graduate research associate, associate agronomist, Dep. of Agronomy. USDA-ARS, Dep. of Plant Pathology, Illinois State University, Champaign, IL 61801. Registration by the Crop Sci. Soc. of Am. Accepted 30 Nov. 1986.

Published in Crop Sci. 27:610–611 (1987).