REGISTRATION OF 'GALLATIN' BARLEY

‘GALLATIN’ barley (Hordeum vulgare L.) (Reg. no. 204) (PI 491534) was developed cooperatively by USDA-ARS and the Montana Agricultural Experiment Station, and released in October 1986 by the Montana and the Idaho Agricultural Experiment Stations. Gallatin is a selection from the cross ‘Summit’/‘Hector’ that was made at Bozeman, MT, in 1975. The F3 selection, MT 313104, was tested in Montana and Western Regional Barley nurseries from 1978 through 1984. Thirty-two uniform progeny rows selected from MT 313104 were bulked in 1984 to form Gallatin, and it was tested in 1985 Montana and regional trials.

Gallatin is a two-rowed, white-kerneled, spring, feed barley that is midseason in maturity. It has mid-lax, mid-long spikes that are seminodding before maturity and nodding at maturity in a manner similar to Hector. The spike has rough awns, glume awns equal to the length of the hair-covered glumes, and rachis edges with hairs. The kernels are midsize and have short-haired rachillas and adhering, finely wrinkled hulls without barbs on the lateral veins.

Compared to Hector, Gallatin is 1 day earlier in heading, has slightly higher test weight and about the same percentage of plump kernels, is about 3 cm shorter in height, and has much stiffer straw. The disease resistance of Gallatin is largely unknown. In a 1981 to 1985 yield comparison with 75 station yr in Montana and Western Regional nurseries, Gallatin yielded about 3% more than ‘Clark’, 2% more than ‘Hector’, and 5% less than ‘Steptoe’. In a 38 station-yr comparison in Montana, Gallatin yielded 8% more than ‘Pirole’. Gallatin is expected to be best adapted to dryland and in the Pacific Northwest and the Northern Great Plains.

Gallatin is named after Gallatin County, Montana, which is home of Montana State University and Agricultural Experiment Station, where this cultivar was developed.

Breeder and foundation seed of Gallatin is maintained by the Foundation Seed Stocks, Plant and Soil Science, Montana State University, Bozeman, MT 59717-0002. Foundation seed also will be available through the USDA Agricultural Experiment Station, Aberdeen Extension Center, Aberdeen, ID 83210. The USDA has no interest in the seed for distribution.

E. A. HOCKETT, K. M. GILBERTSON, G. D. KESLER, R. CARLSON, V. R. STEWART, AND G. F. STALLKNECHT

References and Notes


Published in Crop Sci. 27:815 (1987).

REGISTRATION OF ‘CITATION II’ PERENNIAL RYEGRASS

‘CITATION II’ perennial ryegrass (Lolium perenne L.) (Reg. no. 105) (PI 506241) was developed through the cooperative efforts of Pure-Seed Testing, Inc., Hubbard, OR; Turf-Seed, Inc., Hubbard, OR; and the New Jersey Agricultural Experiment Station, and released in September 1984. It is being produced and marketed by Turf-Seed, Inc. Certified seed became available following the 1984 harvest in western Oregon.

Citation II is an advanced generation synthetic cultivar selected from the progenies of 13 clones of perennial ryegrass. Three sources of resistance to stem rust disease (incited by Puccinia graminis Pers.) were selected from old turfs in St. Louis, MO and Washington, DC, and used as donors.

Resistance to the large brown patch disease (Rhizoctonia solani Kuhn) and summer performance was assessed in New Jersey turf trials. Progenies of clones showing improved turf performance in New Jersey and Oregon were planted in a space plant nursery near Hubbard, OR, for the fifth and final cycle of selection. A total of 185 plants were selected from this nursery of parents of Citation II. Final selection was based on uniformity, maturity, high seed yield, attractive appearance, and disease resistance. Pure Seed 282 was the experimental designation of Citation II.

Citation II is an attractive, leafy, persistent cultivar. It is capable of producing a medium low turf with a bright, dark green color. It is medium early in maturity and has the capability of producing high seed yields. In addition, Citation II exhibits improved resistance to netblotch disease [caused by the Lolium endophyte (Acremonium loliae L.)], stem rust, and many races of crown rust. It has also shown significant improvements in overall turf performance and mowing qualities in seeded, closely mowed turf trials.

E. A. HOCKETT, K. M. GILBERTSON, G. D. KESLER, R. CARLSON, V. R. STEWART, AND G. F. STALLKNECHT

References and Notes


Published in Crop Sci. 27:815 (1987).