gentine stem weevil (*Listronotus bonariensis* Kuschel), the bluegrass billbug (*Sphenophorus parvulus* Gyllenhal), and various species of lepidopterous sod webworms (1,2). Endophyte containing pasture or forage can adversely affect animal performance and health under certain environmental conditions (2).

Citation II shows promise of excellent performance in full sun and in light to moderate shade in most regions where turf-type perennial ryegrasses are well adapted. It can also be used to provide a temporary turf in heavily shaded sites when seeded in fall or early spring. Citation II is recommended for use on golf courses, home lawns, parks, athletic fields, institutional grounds, and school play areas. It is often mixed with a blend of adapted Kentucky bluegrasses (*Poa pratensis* L.) and/or fine fescues (*Festuca rubra* L. or *F. longifolia* Thuill.) for these uses. Citation II also performs well for the winter overseeding of dormant warm season turfs.

Breeder seed of Citation II is produced by Pure-Seed Testing, Inc. Seed propagation is restricted to three generations of increase from breeder seed, and one generation each of foundation, registered, and certified seed. Seed less than 14 months old or seed maintained in dry, cold storage should be used where endophyte enhancement of performance is desired. This is needed to maintain the viability and effectiveness of the Lolium endophyte.

United States Plant Variety Certificate no. 8400142 has been issued for Citation II perennial ryegrass.

W. A. MEYER, C. ROSE-FRICKER, B. L. ROSE, AND C. R. FUNK (3)

References and Notes

3. President and research director, Pure-Seed Testing, Inc., P.O. Box 449, Hubbard, OR 97032; plant breeder, Pure-Seed Testing, Inc.; president, Turf-Seed, Inc., P.O. Box 250, Hubbard, OR 97032; and professor, Soils and Crops Dep., New Jerse Agric. Exp. Stn., Cook College, Rutgers Univ., New Brunswick, NJ 08903. Some of this work was performed as part of New Jersey Agric. Exp. Stn. Project 15166, supported by New Jersey Agric. Exp. Stn. funds, other grants, and gifts. Additional support was received from the U.S. Golf Assoc. Green Section Res. and Education Fund, Inc. Registration by the Crop Sci. Soc. of Am. Accepted 30 Jan. 1987.

REGISTRATION OF ‘PROAT’ OAT

‘Proat’ spring oat (*Avena sativa* L.), MN 79229 (Reg. no. 316) (PI 506242), was developed cooperatively by the Minnesota Agricultural Experiment Station and USDA-ARS, and released in 1985. It originated from a single F₁ panicle in a ‘Dal’/‘Lyon’ population. Seed from selected F₁ plants was planted in F₂ rows in the field and random panicles were harvested from selected rows. Seed from individual panicles was planted in unreplicated F₂ hill plots that were individually bulk harvested. Beginning in the F₂ generation the trait groat protein percent received special emphasis in selection, as did protein yield in more advanced generations.

Replicated yield evaluations of Proat were begun in 1978, and statewide testing was initiated in 1980. Proat was included in the Uniform Midseason Oat Performance Nursery in 1981–1982. In Minnesota tests, it has consistently excelled for protein yield and bushel weight. Compared to ‘Moore’, Proat is similar in heading date and height, is more lodging resistant, and has higher groat protein percent, but is lower in grain yield.

Proat is resistant to loose smut [caused by *Ustilago avenae* (Pers.) Rostr] and, in the adult plant, to crown rust [caused by *Puccinia coronata* Cda. F. sp. *avenae* Erichs & E. Henn.].

Seed of Proat is ivory in color and fluoresces under ultraviolet light. Its lemmas are medium length and infrequently have small awns that break during normal threshing. Spikelet separation is by fracture and floret separation is by heteroeruption. The stems are medium sized, yellow, and hairless at the upper culm nodes. The leaf margins and leaf sheaths are hairless. A ligule is present. The panicle is equilateral, medium sized, and has spreading branches.

Proat is best adapted to the northern portion of the midwestern oat growing region. It should be valuable as a feed oat and as a milling oat because of its protein content and bushel weight.

Seed of Proat was released to certified growers in Minnesota in 1985. Breeder seed will be maintained by the Minnesota Crop Improvement Association, 1900 Hendon Ave., St. Paul, MN 55108.

References and Notes

REGISTRATION OF ‘LANGLEY’ PEANUT

‘Langley’ (Reg. no. 31) (PI 506237) is an early maturing, runner market type peanut (*Arachis hypogaea* L.) released by the Texas Agricultural Experiment Station in 1986. The cultivar normally matures 1 to 2 weeks earlier than ‘Florunner’ and simultaneous with ‘Tamnut 74’ when the three cultivars are grown in the same environment. Langley was selected from the 1976 cross, Florunner × PI 109839. Both parents are later maturing Virginia botanical types (*A. hypogaea* ssp. *hypogaea* var. *hypogaea*). Thus, Langley (pedigree no. TP-107-3-8) and several early maturing sister lines resulted from transgressive segregation for maturity.

Yield potential for Langley has been equivalent to Florunner under good management conditions. However, when early and late leafspot [Cercospora arachidicola Hori and *Cercosporidium personatum* (Berk. & Curt.) Deighton] were severe and uncontrolled, and harvest was delayed until Florunner was mature, the yields of Langley have been significantly lower than Florunner (1). The percentage sound mature kernels (SMK = undamaged seed riding a 6.35 X 19.05 mm slotted grade screen) for Langley usually has been 1 to 3% lower than Florunner (1). Plant characters of Langley have been very similar to Florunner. However, the main stem height of Langley has averaged 3 to 5 cm shorter, and foliage color has been slightly lighter green than Florunner. Pod and seed size (length and width) of Langley have been...