equal to Florunner, but the diameter of the pod constriction between the seeds has been significantly larger (LSD 0.05) in Langley (10.5 vs. 11.1 mm, unpublished data). Quality analyses of pod and seed samples have shown Langley and Florunner to be equal in shellability, blanchability, and shelf-life. The two cultivars were similar in protein content (Langley = 24.04%, Florunner = 24.57%) and oil content (Langley = 51.7%, Florunner = 51.8%).

Foundation seed of Langley may be obtained from the Foundation Seed Service (FSS), Department of Soil and Crop Sciences, Texas Agricultural Experiment Station, Texas A&M University, College Station, TX 77843.

C. E. SIMPSON, O. D. SMITH, AND D. H. SMITH (2)

References and Notes
2. Professors, Texas Agric. Exp. Stn., Texas A&M Univ. System, Stephenville, College Station, and Yoakum, TX, respectively. Contribution TA no. 22112, Texas Agric. Exp. Stn., Texas A&M Univ., College Station, TX 77843.

Published in Crop Sci. 27:816-817 (1987).

REGISTRATION OF 'SOUTHERN RUNNER' PEANUT

'SOUTHERN RUNNER' peanut (Arachis hypogaea L. subsp. hypogaea, var. hypogaea) (Reg. no. 32) (PI 506419) was developed by the Florida Agricultural Experiment Station and approved for release in 1984. Tested experimentally as UF 80202 or 72 X 93-6-1-1-b3-B, Southern Runner was derived from a cross made in 1972 between PI 203396 and the widely grown cultivar, 'Florunner' (3). The primary objective of the cross was to incorporate resistance to the leafspot diseases [caused by Cercosporidium personatum (Berk. & Curt.) Deighton (late leafspot) and/or Cercospora arachidicola Hori (early leafspot)] into a high-yielding, runner-type peanut. The female parent (PI 203396) belongs to A. hypogaea subsp. hypogaea var. hypogaea, is late maturing, has runner growth habit, tan seed testa, and averages 86 g/100 seed. It was selected as a parent based on field tests in 1971 at Marianna, FL, for leafspot resistance. This resistance was further documented in subsequent research by de la Torre (1). Florunner has a runner growth habit, pink testa, and runner market type fruit with no appreciable resistance to late leafspot.

Southern Runner is a multiline cultivar formed from a composite of three sister lines (UF 80202-1, 80202-2, and 80202-3). It is approximately 1 week later in maturity than Florunner in Florida. Early season (first 30-40 days) development is slower than Florunner, but it will usually equal Florunner in vegetative growth by midseason and exceeds it in leaf area index by 100 ± days after planting. Selections were made for good runner agronomic traits with resistance to leafspot. Seed from three F3 plants were bulked for replicated yield trials in the F6 generation. Tests with and without fungicides were conducted to evaluate agronomic performance and leafspot resistance, especially to Cercospora personatum. Southern Runner has consistently had a yield advantage when leafspot was not controlled, averaging 195% of Florunner. With leafspot control provided by a fungicide, Southern Runner has equaled those of Florunner. Southern Runner has a slightly higher oil percentage than Florunner (52.8 vs 49.9%), with less protein (22.4 vs 23.3%). Its oil is higher in the monounsaturated oleic acid and lower in polyunsaturated linoleic acid than Florunner with a lower iodine value than for Florunner (91.5 vs. 95.4). These values indicate better potential keeping quality for manufactured products from Southern Runner. No significant differences from Florunner were detected in taste or blanching tests.

Southern Runner is adapted to the same growing regions in the USA as Florunner, but since it is somewhat later in maturity, it should be best adapted to areas somewhat late. Its greatest advantage would be in the southeastern USA where leafspot is an annual disease problem. Concerning foundation seed supply of Southern Runner, inquiries should be directed to Florida Foundation Seed Producers, P.O. Box 309, Greenwood, FL 32443. Breeder seed will be maintained by the University of Florida Agricultural Experiment Station.

D. W. GORBET, A. J. NORDEN, F. M. SHORES, AND D. A. KNAUFT (5)

References and Notes
5. Professor, Univ. of Florida Agric. Res. and Education Center, Plant Pathology Dep., Dep. of Agronomy, Univ. of Florida, Gainesville, Florida.