The panicle is semicompact at the base, loose and broad at the apex, and is distinctly clustered. Glumes are short, straw colored, and cover about one-fourth of the grain. The grain of ICSV 197 is bright, asymmetrical, without subcoat, and has a thin, colorless pericarp and a beak. Seed weight is 2 g/100 grain for this cultivar. ICSV 197 is tall (190 to 300 cm) and produces a fodder yield of about 11.0 t ha\(^{-1}\). The grain yield performance of ICSV 197 was evaluated in 59 varietal yield trials across countries during 1984 and 1985. On the average, it yielded 3330 kg ha\(^{-1}\) as compared to 3450 kg ha\(^{-1}\) for 'CSV 11', a released sorghum cultivar in India, over years and locations (97% of CSV 11). Its yield potential is 50% higher than the resistant parent DJ 6514 (1).

Seeds of ICSV 197 will be maintained, and distributed by the Genetic Resources Unit of the International Crops Research Institute for the Semi-Arid Tropics, 502 324, India, and has been stored under quarantine conditions at the National Seed Storage Laboratory, Fort Collins, CO 80523.

B. L. AGRAWAL, H. C. SHARMA, AND K. LEUSCHNER (2)

References and Notes
2. Plant breeder (sorghum). Cereals Improvement Program, ICRISAT, Patancheru P.O., A.P. 502 324, India; entomologist, Cereals Improvement Program, Patancheru P.O., A.P. 502 324, India; and principal cereals entomologist, SADCC/ICRISAT Sorghum and Pearl Millet Improvement Program, P.O. Box 776, Bulawayo, Zimbabwe. ICRISAT Journal Article no. 659. Registration by the Crop Sci. Soc. of Am. Accepted 30 May 1987.

Published in Crop Sci. 27:1312–1313 (1987).

REGISTRATION OF 'PELLA 86' SOYBEAN

'PELLA 86' soybean [Glycine max (L.) Merr.] (Reg. no. 206) (PI 509044) was developed cooperatively by the Iowa Agriculture and Home Economics Experiment Station, the Ohio Agricultural Research and Development Center, and the Puerto Rico Agricultural Experiment Station. It was released in 1986 because of its resistance to several races of Phytophthora rot [caused by Phytophthora megasperma (Drechs.) f. sp. glycinea Kuan & Erwin] to which the cultivar 'Pella' is susceptible (1).

Pella 86 is a composite of BC\(_3\) plants from the backcross Pella\(^2\) × 'Williams 82'. Williams 82 was the source of the Rps\(_4\) allele for resistance to races 1 to 10, 13, 15, 17, 18, 21, and 22 of P. megasperma. The backcrossing program was a cooperative effort of the institutions in Iowa, Ohio, and Puerto Rico. After testing in Iowa, the seeds of 31 selected BC\(_3\)F\(_2\)-derived lines were bulked to form Pella 86. The lines were homozygous for the Rps\(_4\) allele, uniform for agronomic characters, and similar in plant type and maturity to Pella. Pella 86 was tested for seed yield in the Uniform Soybean Tests, Northern States, during 1984 and 1985 under the designation AHW-Pella BC.

Pella 86 has purple flowers, tawny pubescence, tan pods at maturity, and dull yellow seeds with black hilum. It is of Maturity Group III and best adapted to approximately 40 to 42°N lat. Pella 86 is similar to Pella for all agronomic and seed characteristics in the absence of Phytophthora rot, including seed yield, maturity, height, lodging resistance, seed weight, seed quality, seed protein and oil percentages, and shattering resistance. Both cultivars are moderately susceptible to Fe-deficiency chlorosis on calcareous soil.

Pella 86 is resistant to race 2 of frogeye leaf spot [caused by Cercospora sojina (Hara)]. It is moderately susceptible to purple stain [caused by Cercospora kikuchii (T. Matsu. & Tomoyasu) Chupp.] and downy mildew [caused by Peronospora manshurica (Naoum.) Syd. ex Gams]. Pella soybean mosaic virus, and bacterial leaf spot [caused by Corynebacterium flaccum-faeciens].

Breeder seed of Pella 86 was distributed to foundation seed organizations in Illinois, Indiana, Iowa, Nebraska, and Ohio for planting in 1986. Breeder seed will be maintained by the Iowa Agriculture and Home Economics Experiment Station, Ames, IA.

W. R. FEHR, A. K. WALKER, A. F. SCHMITTHENNER, AND B. K. Voss (2)

References and Notes
2. Breeder, Prof. of Agronomy, Iowa State Univ.; former associate professor, Dep. of Agronomy, and professor, Dep. of Plant Pathology, Ohio State Univ., Wooster, OH 44691; and research associate, Dep. of Agronomy, Iowa State Univ., Ames, IA 50011. Joint contribution from the Iowa Agric. Home Economics Exp. Stn., Ames, IA. Project no. 2475, Journal Paper no. J-12590; the Ohio Agric. Res. and Development Ctr., Wooster, OH 44691; and the Puerto Rico Agric. Exp. Stn., Mayaguez, Puerto Rico 00708. The research was supported by a grant from the Iowa Soybean Promotion Board. Registration by the Crop Sci. Soc. of Am. Accepted 30 May 1987.

Published in Crop Sci. 27:1313 (1987).

REGISTRATION OF 'DF 485' DARK FIRE-CURED TOBACCO

'DF 485' (Reg. no. 96) (PI 509533) is the first black shank resistant cultivar of dark fire-cured tobacco (Nicotiana tabacum L.) that is also resistant to other tobacco diseases. It has medium resistance to race 0 and race 1 black shank, [caused by Phytophthora parasitica Dast. var. nicotianae (Breda de Haan) Tucker]; high resistance to black root rot [caused by Thielaviopsis basicola (Berk & Br) Ferr.]; high resistance to wildfire [caused by Pseudomonas tabaci (Wolf & Foster)]; and high resistance to tobacco mosaic virus (TMV). DF 485, developed by the Tennessee Agricultural Experiment Station, was released in 1985.

DF 485, which was tested as TXF 811, was derived from a cross between 'DF 300' and breeding line D70-981 (2,3). DF 300, which provided the black shank resistance present in DF 485, was in the F\(_7\) generation through F\(_9\) generations and the progeny screened in a greenhouse for resistance to black root rot, wildfire, and TMV. Homozygous selections resistant to these diseases were bulked in the F\(_6\) generation. Evaluations for disease resistance, yield, and quality were conducted in the DF 300 × D70-981 crosses made on a single plant basis in black shank nurseries in the F\(_4\) through F\(_8\) generations and the progeny screened in a greenhouse for resistance to black root rot, wildfire, and TMV. Homozygous selections resistant to these diseases were bulked in the F\(_9\) generation. Leaves of DF 485 were approximately 4 cm longer than those of 'Certified Madole' or DF 300. The leaf width of DF 485 is approximately equal to that of DF 300 but is about...