Average daily gains over 3 yr because grazing could be initiated earlier (D.D. Warnes, 1986, personal communication).

Flowering date (anthesis) for switchgrass has a northwest to southeast gradient in the Northern Great Plains. Phenology evaluations at Fergus Falls, MN, indicated that Forestburg was 24 to 27 d later than the northern source NDG-965-98. It was up to 3 d earlier than Nebraska 28 and Sunburst, and 21 to 30 d earlier than the southern cultivars Pathfinder, Blackwell, and Cave-in-Rock, which do not consistently produce mature seed at northern latitudes.

The primary area of use for Forestburg is on sites where switchgrass is recommended for range and pasture seedings, wildlife habitat, natural area development, and revegetation of surface mines, critical areas (waterways), and transportation corridors in North Dakota, South Dakota, and Minnesota.

Breeder seed of Forestburg will be maintained at the USDA-ARS, Northern Great Plains Research Laboratory, Mandan, ND 58554. Foundation and certified generations of seed increase beyond breeder seed are authorized. Foundation seed will be available from the USDA-SCS, Plant Materials Center, Bismarck, ND 58502.

R. E. Barker,* R. J. Haas, E. T. Jacobson, and J. D. Berdahl (1)

References and Notes


REGISTRATION OF 'AVALON' SALT MEADOW CORDGRASS

'AVALON' salt meadow cordgrass [Spartina patens (Ait.) Muhlenb.] (Reg. no. 111) (PI 421237) was developed by the USDA-SCS and was released in February 1986 in cooperation with the New Jersey Agricultural Experiment Station. The original plant was collected from a salt marsh near Avalon, NJ, in 1965. This plant was increased vegetatively and initially tested as NJ-418 (PI 421237) at the Cape May Plant Materials Center, Cape May Court House, NJ. Avalon was made commercially available in 1987.

Salt meadow cordgrass is a rhizomatous perennial grass that grows to 0.75 m tall (1). Avalon rhizomes are long and slender and are responsible for producing most of the new growth. Avalon has the ability to spread quickly and produce a more dense root system and finer roots than most other salt meadow cordgrass strains. It is well adapted to sandy to clay soils, will tolerate periodic inundation by storm tides, and has the ability to grow through thin layers of sand. Although tidal areas are expected to be the principal use, Avalon is adapted to low elevation coastal sand dunes as a supplemental vegetation. Avalon does produce seed but essentially all natural propagation is vegetative. All propagation increase has been by vegetative means. For use in both potted and bare-rooted plants have been used. Potted vegetation. Avalon does produce seed but essentially all natural propagation is vegetative. All propagation for testing or field.

Tidal plantings of Avalon salt meadow cordgrass can be established between rows of smooth cordgrass (Ammophila breviligulata Lois.) and American beachgrass (Ammophila breviligulata (L.) Fern.). The natural habitat for Avalon is immediately above the high tide line. Avalon has been successfully established on tidal areas by planting parallel rows on the beach above the mean high tide with several rows of smooth cordgrass established to and below. On sites with steep unstable banks from Massachusetts to North Carolina further north and south has not been confirmed; therefore such use is anticipated. Breeder culms of Avalon will be maintained and distributed by USDA-SCS at the Plant Materials Center, Cape May Court House, NJ.

D. W. Hamer,* C. R. Belcher, and R. W. Duell (2)

References and Notes

2. D.W. Hamer, USDA-SCS, Cape May Plant Materials Center, 9N, Cape May Court House, NJ 08210; C.R. Belcher, 243 Hamilton St., Somerset, NJ 08873; and R.W. Duell, Soil Conservation Service, New Jersey Agric. Exp. Stn., Cook College, Rutgers Univ., NJ 08903. This work was performed at the Plant Materials Center, supported primarily by the USDA-SCS with support from New Jersey Agric. Exp. Stn. New Jersey Agric. Exp. Stn. publication.

D. W. Hamer,* C. R. Belcher, and R. W. Duell (2)