and seed from alkaloid (sweetness), softness of seed, cold
tolerance, and resistance to gray leaf spot and anthracnose. However, the nonshattering feature permits seed of SNLL-
87 like Tifblue-78 to be harvested several weeks after ma-
turity, whereas Frost and other narrow-leafed lupins in the
USA shatter seed at maturity. Forage yields averaged 7.636
Mg ha⁻¹. Crude protein of forage ranged from 16.4 to 17.6%.
Nitrogen production of herbage averaged 141 kg ha⁻¹ by
early April.

Breeders seed will be maintained by the University of
Georgia Coastal Plain Experiment Station at Tifton, GA.
Limited supplies of SNLL-87 germplasm (up to 100 g) will
be provided to researchers and other interested parties upon
written request.

J. D. MILLER,* I. FORBES, JR., AND H. D. WELLS (3)

References and Notes
3. J.D. Miller and H.D. Wells. USDA-ARS, Tifton, GA 31793; I. Forbes, Jr.,
retired (formerly, USDA-ARS, Tifton, GA). Cooperative investigations of
USDA-ARS and Univ. of Georgia, Coastal Plain Exp. Stn., Tifton, GA
31793. Registration by the CSSA. Accepted 30 Sept. 1987. *Corresponding
author.

Published in Crop Sci. 28:380-381 (1988).

REGISTRATION OF NE-HY-13A AND NE-HY-13B
COMPLEMENTARY POPULATIONS OF SUGARY
MAIZE GERMPLASM
NE-HY-13A (GP-170, PI 511806) and NE-HY-13B (GP-171, PI 511807) maize (Zea mays L.) populations, released in
1987, were developed under USDA-CSRS Regional Project
NE-124(1) as NE-HY (high yield) populations designed to
provide potential for improving yield of sweet corn. Good
combining sweet (su su) corn inbreds were separated into A
(P39, C6, 15125, 12256B, GG1143, and GG1108) and B (PS1,
C13, 1453, 12132, GG1104, GG1109, and GG1126) groups
based upon superior combining ability between groups. All
possible crosses were made within the A and B groups in
1978 and equal amounts of seed from each combination were
bulk populations, ICMP 1 (ICMPES-1), ICMP 2 (ICMPES-
2), ICMP 3 (ICMPES-28), and ICMP 4 (ICMPES-32) (Reg.
No. GP-1, GP-2, GP-3, and GP-4) (PI 512041 through PI
512044) were developed with combined resistance to ergot
(called by Claviceps fusiformis Lov.), smut (caused by
Tolyposporium penicillariae Bref.), and downy mildew [caused by
Sclerospora graminicola (Sacc.) Shroet.] at the Interna-
tional Crops Research Institute for the Semi-Arid Tropics
(ICRISAT), India. These populations have been made avail-
able for use as resistance donors in breeding of synthetic
cultivars since July 1985. ICMP 1 was derived from a J606 × J703-1 cross, ICMP
2 from a J2238 × J2210-2 cross, and ICMP 3 and ICMP 4 from a
700708-1-E-1 × 77971-1-E-1-2 cross (J numbers are breeding lines fromJamnagar, India and 700708 is a breeding
line from Kano, Nigeria). Each population is a sib-bulk
of several selected ergot, smut, and downy mildew resistant
F₂ lines. During breeding through pedigree selection,
ergot resistance was of primary importance, but the lines
were also screened for smut and downy mildew resistance
in alternate generations. In both 1982 and 1983, each pop-
ulation was tested for ergot reaction in the International Pearl
Millet Ergot Nursery (IPMEN) planted at 8 to 12 locations
in India and Africa, and for ergot, smut, and downy mildew
in the multiple disease nursery at ICRISAT Center, Patanch-
eru.

D. W. DAVIS,* J. L. BREWBAKER, AND K. KAUKIS (2)

References and Notes
1. Members of the Technical Committee of USDA-CSRS Regional Project
NE 124 and representing the State Agric. Exp. Sta. of California, Connec-
ticut, Florida, Hawaii, Idaho, Illinois, Indiana, Massachusetts, Min-
esota, New York, Pennsylvania, and Wisconsin, plus one USDA-ARS
member of the committee met with industry plant breeders representing
the fresh market, processing, and seed industry sectors to choose the A
and B parental inbred sets and to suggest strategy for the development of
NE-HY-13A and NE-HY-13B.
2. D. W. Davis, Horticultural Science Dept., Univ. of Minnesota, St. Paul,
MN 55108; J.L. Brewbaker, Dep. of Horticulture, Univ. of Hawaii, Hon-
olulu, HI 96822; K. Kauki. The Pillsbury Co., Leeser, MN 55605. Pub-
lished as Journal Article no. 15 397 of the Minnesota Agric. Exp. Stn., St.
Paul, MN 55108. Registration by the CSSA. Accepted 30 Sept. 1987. *Cor-
responding author.

Published in Crop Sci. 28:381 (1988).

REGISTRATION OF FOUR POPULATIONS OF
PEARL MILLET GERMPLASM WITH MULTIPLE
DISEASE RESISTANCE
FOUR pearl millet [Pennisetum americanum (L.) Leeke] sib-
bulk populations, ICMP 1 (ICMPES-1), ICMP 2 (ICMPES-
2), ICMP 3 (ICMPES-28), and ICMP 4 (ICMPES-32) (Reg.
No. GP-1, GP-2, GP-3, and GP-4) (PI 512041 through PI
512044) were developed with combined resistance to ergot
(called by Claviceps fusiformis Lov.), smut (caused by
Tolyposporium penicillariae Bref.), and downy mildew [caused by
Sclerospora graminicola (Sacc.) Shroet.] at the Interna-
tional Crops Research Institute for the Semi-Arid Tropics
(ICRISAT), India. These populations have been made avail-
able for use as resistance donors in breeding of synthetic
cultivars since July 1985. ICMP 1 was derived from a J606 × J703-1 cross, ICMP
2 from a J2238 × J2210-2 cross, and ICMP 3 and ICMP 4 from a
700708-1-E-1 × 77971-1-E-1-2 cross (J numbers are breeding lines fromJamnagar, India and 700708 is a breeding
line from Kano, Nigeria). Each population is a sib-bulk
of several selected ergot, smut, and downy mildew resistant
F₂ lines. During breeding through pedigree selection,
ergot resistance was of primary importance, but the lines
were also screened for smut and downy mildew resistance
in alternate generations. In both 1982 and 1983, each pop-
ulation was tested for ergot reaction in the International Pearl
Millet Ergot Nursery (IPMEN) planted at 8 to 12 locations
in India and Africa, and for ergot, smut, and downy mildew
in the multiple disease nursery at ICRISAT Center, Patanch-
eru.