has Plant Variety Protection, which requires that it be sold only by name as classes of certified seed.

L. S. Bird, K. M. El-Zik,* AND P. M. Thaxton (4)

References and Notes


Published in Crop Sci. 28:574–575 (1988).

REGISTRATION OF ‘GLENWOOD’ SOYBEAN

‘GLENWOOD’ soybean [Glycine max (L.) Merr.] (Reg. no. 211) (PI 513382) was developed by the Minnesota Agricultural Experiment Station. Glenwood was released because of its superiority in seed yield and protein content compared with public cultivars of similar maturity.

Glenwood is the progeny of an F₄ plant from a population advanced by single seed descent from the cross ‘Evans’ × ‘Peterson 85’. Peterson 85, released by the Peterson Seed Company, was a selection from the cross ‘Provar’ × ‘Amsoy’ × PI 248404). Glenwood was evaluated from 1978 to 1986 in Minnesota and in the Uniform Soybean Tests, Northern States, Group 0 from 1981 to 1983 and 1985 to 1986 under the designation M74-12 (2).

Glenwood, a Maturity Group 0 cultivar, matures 1 d later than ‘Dawson’ and is a full season cultivar from 45 to 47° N lat. It is indeterminate in growth type with purple flowers, gray pubescence, brown pods at maturity, and dull yellow seed with imperfect black hila. Glenwood has outyielded Dawson by about 5% (1, 2). It is about 3 cm shorter than Dawson and has a lodging score of 1.6, compared to 2.0 for Dawson, on a scale of 1 = all plants erect to 5 = all plants prostrate. Seeds of Glenwood are 23 mg seed⁻¹ heavier, 1.1 percentage points higher in protein, and 0.2 percentage points lower in oil than Dawson. Seed quality of Glenwood has been similar to that of Dawson. On high pH soils, Glenwood has an Fe chlorosis score of 3.0, compared with 2.1 for Dawson, on a scale of 1 = resistant to 5 = susceptible. Glenwood is resistant to races 1 and 2 of Phytophthora root rot (caused by Phytophthora megasperma Drechs. f. sp. glycinea, Kuan and Erwin) and is resistant to powdery mildew (caused by Microsphaera diffusa Cke. and Pk.).

Published May, 1988

REGISTRATION OF ‘CP 77-1776’ SUGARCANE

‘CP 77-1776’ sugarcane (a complex hybrid of S. officinarum L., S. spontaneum L., S. barberi Jeswiet, and S. sinense Roxb. amend. Jeswiet) (Reg. no. 74) (PI 512290) was selected from progeny of ‘CP 68-1067’ (1) X CP 68-1022. The cross was made at Canal Point, FL, in November 1975. The cultivar, CP 77-1776 was developed through cooperative research by the USDA-ARS, the Institute of Food and Agricultural Sciences of the University of Florida, and the Florida Sugar Cane League, Inc., and was released in 1986.

CP 77-1776 has the highest early sucrose yield of any clone ever developed in this cooperative breeding program. It is a midseason (late December) flowering clone with a rather erect growth habit. Individual stalk weights, averaged over plant, first-, and second-ratoon crops at eight locations, were 1.5 kg for CP 77-1776 compared to 1.6 kg for the commercial check, ‘CP 63-588’ (2). In the average of 23 replicated yield tests (8 plant cane, 8 first ratoon, and 7 second ratoon), sugar per ton of cane for CP 77-1776 averaged 23 and 9% higher than that of CP 63-588 at early (last 2 wk of October) and regular harvests, respectively. The harvest season in Florida runs from late October through March. Although CP 77-1776 has excellent yield of sugar per ton of cane, it is somewhat lower in cane yield than the commercial checks. However, when sugar per ton and cane yield are considered together, the yield of sugar per hectare for CP 77-1776 was 11% higher and 97% of that for CP 63-588 at early and late harvest, respectively. CP 77-1776 has a millability rating of 1.03 and a fiber content of 9.22% compared to 1.00 and 9.69%, respectively, for CP 63-588. CP 77-1776 has adequate resistance, for commercial production in Florida, to sugarcane mosaic virus, rust (caused by Puccinia melanocephala H. Syd. and P. Syd.), leaf scald (caused by Xanthomonas albilineans (Ashby) Dow), eye spot (caused by Bipolaris sacchari (Butler) Shoemaker), and smut (caused by Ustilago scitaminea Sydow). Seedcane of CP 77-1776 will be maintained by USDA-ARS at the Sugarcane Field Station, Canal Point, FL.

P. Y. P. Tai, J. D. Miller, B. Glaz, J. L. Dean, M. S. Kang, and J. R. Orsenigo (3)

Published in Crop Sci. 28:574–575 (1988).