one unit higher than Morrison (15.5%) and two units higher than Councill (14.5%). The forage protein at boot stage is 23.1% as compared to 21.8% for Morrison and 20.9% for Councill. Thomas is moderately resistant to leaf blight (caused by Septoria tritici Rob.) and glume blight (caused by Septoria nodorum Berk.).

Breeder seed will be maintained by the School of Agriculture, Alabama A & M University, Normal, AL 35762.

F. A. CHOLICK,* K. M. SELLERS, AND G. W. BUCHENAU (1)
Published November, 1988

Agriculture Crop Research in 1987. Breeders seed will be maintained by Alberta Agriculture Crop Research, Lacombe, AB, Canada, T0C 1S0. Registration supported by USDA-CSRS 95-113. Registration by CSSA. *Corresponding author. Accepted 30 Apr. 1988.

Published in Crop Sci. 28:1030-1031 (1988).

REGISTRATION OF ‘WAPITI’ TRITICALE

‘WAPITI’ triticale (X Triticosecale Wittmack) (Reg. no. 6), PI 511870, was developed by Alberta Agriculture Crop Research, Lacombe, Alberta, Canada. Wapiti was selected in 1980 from the International Maize and Wheat Improvement Center (CIMMYT) line ‘Juanillo 90’ in the 11th International Triticale Screening Nursery. The selection was evaluated for 2 yr in preliminary yield trials (1981–1982) prior to 3 yr (1983–1985) of testing as T44 in national cooperative trials. Two hundred F1, headrows were grown and rogued to eliminate off-type material.

Wapiti is a hexaploid spring triticale similar in plant height, maturity, sprouting susceptibility, and lodging resistance to the triticale cultivar Carman. Wapiti demonstrates an improvement in seed yield of 69.0 kg ha−1 (14%) and test weight (2.0 kg hL−1) relative to Carman, but has 1% lower protein.

Wapiti produces silage yields that are 8% higher than Carman and 4% higher than the barley cultivar Johnston. Comparisons for energy, protein, total digestible nutrients, lignin, and trace minerals indicate that the quality of Wapiti silage is similar to that of Johnston barley.

Wapiti has good resistance to leaf rust (caused by Puccinia recondita f. sp. tritici), stem rust (caused by Puccinia graminis f. sp. tritici), loose smut (caused by Ustilago tritici), and bunt (caused by Tilletia caries). Wapiti is superior to Carman in resistance to common root rot (caused by Helminthosporium spp).

Juvenile plant growth is intermediate in habit. The flag leaf is medium to long in length, medium in width, dark green in color, and has a pronounced waxy bloom. Although the leaf sheath is glabrous, a few short hairs occur on the flag leaf blade. Auricles are purple. The culm neck is kinked and pubescent. Wapiti has a medium to long tapering spike, which is lax and nodding. The glumes are pubescent and waxy with a light yellow to white color at maturity. Spikes are long, somewhat lax with white glumes, which are awnletted. Awns are 5 to 10 mm long at the base and 10 to 35 mm long at midspike. Wapiti’s awn length is the primary distinguishing feature when comparing triticale cultivars. Spike fertility is good, and ergot (caused by Claviceps purpurea) has not been observed.

Wapiti was named and released by the South Dakota Agricultural Experiment Station in 1986. Breeder seed will be maintained by Foundation Seed Stocks Project, South Dakota Agricultural Experiment Station, South Dakota State University, Brookings, SD, 57007.

Val T. Sapra*, and Ali Hassanalizadeh (1)

References and Notes

Published in Crop Sci. 28:1030-1031 (1988).

REGISTRATION OF ‘MARVAL’ TRITICALE

‘MARVAL’, SD 9009 triticale (X Triticosecale Wittmack), PI 495869) was developed and released by the South Dakota Agricultural Experiment Station, Brookings. It is an F2 selection from a F1 bulk population (cross number X 27807 derived head row) obtained from International Maize and Wheat Improvement Center (CIMMYT) in 1977. The pedigree is Imperial Amber/Maya II-Armadillo/Pitic 62/3.

F2 was planted in the greenhouse, harvested as an F3 in the field at Brookings, SD, and seed from the harvest was planted in a winter nursery. The winter nursery selection was advanced to a winter nursery in 1980 where it was evaluated in South Dakota yield trials from 1981 to 1986. ‘Karl’ triticale at 100 cm and 85 cm, respectively. Marval’s grain yield in South Dakota trials from 1981 to 1986 was 3090 kg ha−1 compared to 2870 and 2930 kg ha−1 for ‘Karl’ and Krammer, respectively. Test weight and grain protein content were 62.7, 64.5, and 60.9 kg hL−1, respectively. Grain protein content was similar to medium level wheats, averaging 14.5%. In six forage trials, Marval was 1% lower protein. Comparison for energy, protein, total digestible nutrients, lignin, and trace minerals indicate that the quality of Wapiti silage is similar to that of Johnston barley.

Marval has seven pairs of rye chromosomes, spikes are long, somewhat lax with white glumes, and awnletted. Awns are 5 to 10 mm long at the base and 10 to 35 mm long at midspike. Marval’s awn length is the primary distinguishing feature when comparing triticale cultivars. Spike fertility is good, and ergot (caused by Claviceps purpurea) has not been observed.

Wapiti was named and released by the South Dakota Agricultural Experiment Station in 1986. Breeder seed will be maintained by Foundation Seed Stocks Project, South Dakota Agricultural Experiment Station, South Dakota State University, Brookings, SD, 57007.

Val T. Sapra*, and Ali Hassanalizadeh (1)

References and Notes

Published in Crop Sci. 28:1030-1031 (1988).

References and Notes
1. Alberta Agric. Field Crops Res., Cereal Breeding Program, Lacombe, AB, Canada, T0C 1S0. Registration supported by USDA-CSRS 95-113. Registration by CSSA. *Corresponding author. Accepted 30 Apr. 1988.

Published in Crop Sci. 28:1030-1031 (1988).