7803-52. Lint fraction and micronaire of the two lines were similar to DES 422 but fiber length was 5% shorter. Fiber strength (T) of Miscot 7803-52 was equal to DES 422 and 5% greater than Miscot 7803-51.

Both lines are resistant to all known U.S. races of Xanthomonas campestris pv malvaeearum (Smith) Dye, the causal agent of bacterial blight. Resistance of Miscot 7803-52 to fusarium wilt, caused by Fusarium oxysporum F. sp. wilt of Zea mays L. was derived from the resistant 'McNair 235', in the Regional Cotton Fusarium Wilt Test at Tallassee, AL. In tobacco budworm, Heliothis virescens F., resistance tests conducted at the USDA-ARS Crop Science Laboratory, Mississippi, MS, both lines were more resistant than 'Stoneville 213'. In tests from 1985 to 1987, lint yields of Miscot 7803-51 were 27% higher than Stoneville 213 in larvae infested plots and 18% higher in larvae controlled plots. Concurrently, yields of Miscot 7803-52 were 36% higher than Stoneville 213 in infested plots and 21% higher in controlled plots.

Seed (25 g) of Miscot 7803-51 and Miscot 7803-52 may be obtained from the Department of Agronomy, P.O. Box 5248, Mississippi State, MS 39762.

F. M. Bourland* and B. W. White (2)

References and Notes
2. F.M. Bourland, Dep. of Agronomy, Univ. of Arkansas, Fayetteville, AR 72701 (formerly, Dep. of Agronomy, Mississippi State Univ., Mississippi State, MS 39762); and B.W. White, Dep. of Agronomy, Mississippi State Univ., Mississippi State, MS 39762. Registration by CSSA. Accepted 30 July 1988. *Corresponding author.

REGISTRATION OF NINE MAIZE GERMPLASM POPULATIONS

NINE maize (Zea mays L.) germplasm populations (Reg. no. GP-184 to GP-192) were released by Funk Seeds International to the National Germplasm System in 1987. Seed is available from the Regional Plant Introduction Station, Iowa State University, Ames, IA 50011.

GS07(RJC2) (GP-184) (PI 520761)—This yellow dent synthetic (AES maturity 400) was developed by Funk Seeds International from BS7(SC1 by two cycles of reciprocal recurrent selection (inbred tester) at Owatonna, MN. The primary trait for selection was increased yield with secondary selection for resistance to root and stalk lodging. BS7 synthetic was derived from Kenya CBK by two cycles of mass selection followed by one cycle of S selection for increased yield in Iowa. CBK was formed at Kitala, Kenya by the Major Cereals Project in Africa with the U.S. Agency for International Development, the Agricultural Research Service of the USDA, the East African Agriculture and Forestry Research Organization, and the Kenya Ministry of Agriculture, cooperating. Kenya CBK was introduced as PI 329228 at the Plant Introduction Station, Ames, IA (2). Kenya CBK included approximately 50% Corn Belt germplasm and approximately 50% exotic material primarily from Central and South America. The Corn Belt sources were: Iowa Stiff Stalk Synthetic no. 2, Iowa Synthetic AA, Iowa Synthetic BB, Iowa Two Ear Synthetic no. 1, Krug Mass Selection, Nebraska Population V, Nebraska Population L, Pioneer 2-ear Compostie, Pioneer hybrids, Dekalb hybrids, Funk hybrids, and PAG hybrids. The exotic material was: French lines (F1, F47, F49, F52, and F431), NBZ (Corn Belt X Brazilian varieties), Nebraska (ETO X early U.S.), Nebraska (ETO X Gaspe Flint), Alaskan Composite (Gaspe Flint X early USA double crosses), Kenya Katumani Panmix (composite of Central American material), Kenya Katumani IV (probably derived from Salvadurenio), Kenya Embu II (composite of 14 Central American varieties), and Kenya Pp coastal (com-