posite of coastal Kenya material and Central American sources for rust resistance incited by *Puccinia polysora*. Iowa Corn Borer Synthetic no. 3, B52, B14, and B19 (Early root-worm synthetic) were introgressed into B57 during the mass selection for shorter plant height and general adaptation to the Iowa environment.

GS17CO (GP-185) (PI 520762)—This yellow dent synthetic (AES maturity 1200) was developed by Funk Seeds International from (Tuxpeño P.B. C7 × RSSSC) with three cycles of recombination at Coolidge, GA and two cycles of full-sib selection for virus tolerance (Maize Dwarf Mosaic and Maize Chlorotic Dwarf) at Waverly, TN. Tuxpeño P.B. C7 was released by CIMMYT after seven cycles of selection for reduced plant height. RSSSC is a synthetic formed from BSSS(RC7, BSSS13(S2)C1, BSSS2(S2)C1 and BSSS2(S1)C2. GS34(RC2 (GP-186) (PI 520763)—This yellow semi-dent synthetic (AES maturity 1200) was formed by crossing SBC1(R)C7, BS11 (FR)C3, and BS12 (HI)C6 to EC573(R12)C4 and then backcrossing to these Iowa synthetics (a very small amount of Piracinco also was included). Then three generations of recombination and two cycles of reciprocal recurrent selection (inbred tester) for increased yield, reduced plant height, and reduced root and stalk lodging were completed at Coolidge, GA. EC573 was selected for increased yield at Guadalajara, Mexico. Kitale II(R11)C6 was developed from Kitale II by six cycles of reciprocal recurrent selection for increased yield by the Major Cereals in Africa Project (1). GS11(R)C1 (GP-187) (PI 520764)—This white dent synthetic (AES Maturity later than 1100) was developed by Semillas Funk by crossing Kitale II(R11)C6 to GS17CO and backcrossing to Kitale II(R11)C6 followed by two cycles of mass selection for reduced plant height and reduced root and stalk lodging and one cycle of reciprocal recurrent selection for increased yield at Guadalajara, Mexico. Kitale II(R11)C6 was developed from Kitale II by six cycles of reciprocal recurrent selection for increased yield by the Major Cereals in Africa Project (1). Kitale II was developed from the Kitale Station cultivar at Kitale, Kenya. This Kenya flat white complex apparently traces back to South African varieties derived from USA germplasm including White Pearl, Hickory King, and White Horsetooth (3). GS11(R)C1 should be a source of resistance for common rust caused by *Puccinia sorghi*, northern corn leaf blight caused by *Exserohilum turricum* (Pass.) Leonard and Suggs, and ear rot caused by *Fusarium* sp.

GS12(R)C1 (GP-188) (PI 520765)—This white dent synthetic (AES maturity later than 1200) was developed by Semillas Funk by crossing EC573(R12)C6 to (ETO × BS16) and backcrossing to EC573(R12)C6 followed by two cycles of recombination and one cycle of reciprocal recurrent selection for increased yield and reduced plant height at Guadalajara, Mexico. EC573 was obtained as a race collection (a long-eared, white flint type, probably of the Montano race) from Ecuador and selected for increased yield and reduced plant height by four cycles of reciprocal recurrent selection at Kitale, Kenya by the Major Cereals in Africa Project (1). Kitale II(R11)C6 was developed from Kitale II by six cycles of reciprocal recurrent selection for increased yield by the Major Cereals in Africa Project (1). Kitale II was developed from the Kitale Station cultivar at Kitale, Kenya. This Kenya flat white complex apparently traces back to South African varieties derived from USA germplasm including White Pearl, Hickory King, and White Horsetooth (3). GS11(R)C1 should be a source of resistance for common rust caused by *Puccinia sorghi*, northern corn leaf blight caused by *Exserohilum turricum* (Pass.) Leonard and Suggs, and ear rot caused by *Fusarium* sp.

References and Notes

REGISTRATION OF MONTANA-3 GRAIN AMARANTH GERMPLASM

Montana-3 (MT-3) (Reg. no. GP-1) (PI 515959) NSSL 230601 grain amaranth (*Amaranthus cruentus* L.) germplasm was released in March 1988, by the Montana Agricultural Experiment Station for breeding and experimental purposes.

MT-3 grain amaranth is a selection developed from RRC-1041 derived by the US Department of Agriculture, Agricultural Research Service, The Ohio State University, Columbus, OH 43210. MT-3 grain amaranth was developed by the late Dr. A.R. Hallauer, USDA-ARS, Fort Collins, CO 80523. (formerly, Funk Seed Int., 1300 W. Washington Street, Bloomington, IL 61701).