Resistance to the sorghum midge appears to be controlled by recessive gene(s) because hybrids from crosses of resistant × susceptible plants are susceptible.

Seed of MR88 will be maintained and distributed by USDA-ARS, Coastal Plain Experiment Station, Tifton, GA 31793. Small quantities of seed will be made available to individuals who wish to evaluate and/or use the germplasm. Recipients of seed are asked to make appropriate recognition of the source of the germplasm if it should contribute to the development of a new germplasm, parental line, or cultivar.

W. W. HANNA,* B. R. WISEMAN, R. R. DUNCAN, and K. F. SCHERTZ

References and Notes
1. W.W. Hanna and B.R. Wiseman, USDA-ARS, Coastal Plain Exp. Stn., Tifton, GA 31793; R. R. Duncan, Georgia Station, Griffin, GA 30223-1797; and K.F. Schertz, USDA-ARS, Texas A&M University, College Station, TX 77843. Contribution of USDA-ARS in cooperation with the University of Georgia Agric. Exp. Stn. Appreciation is expressed to Bobby Moss at the SW Georgia Exp. Stn. at Plains, GA for his cooperation in testing the germplasm at Plains. Registration by the CSSA. *Corresponding author. Accepted 30 June 1988.

Published in Crop Sci. 29:245-246 (1989).

REGISTRATION OF CYTOPLASMIC MALE-STERILE SUGARBEET GERMLASM C600CMS

SUGARBEET (Beta vulgaris L.) germplasm C600CMS (Reg. no. GP-129) (PI 520748), released in 1988, is the cytoplasmic male-sterile equivalent of C5600 released in 1965 (1). Also known as C600, C5600 is an annual (BB), homozygous (autodiploid) line that is closely related to NB 1 (2). Genotypically, C5600 and C600CMS are BB, rr, MM, and SS$'$ and have excellent O-type characteristics. They are resistant to the curly top virus and are bolting resistant annuals; i.e., in the absence of vernalization, C5600 and C600CMS require an exceptionally long period of exposure to long-day conditions to initiate seed stalks.

C5600 has already proven useful in sugarbeet (3,4,5). However, because of its highly self-fertile nature, F_1 hybrids have been difficult to produce. The male sterility of C600CMS should enhance the value of this germplasm in future genetic and plant breeding programs. Recently, it has been shown (R.T. Lewellen, 1988, unpublished) that the combination of high nonbolting tendency and male sterility in this annual also may make it useful as a tester to discriminate and sort biennial (bb) genotypes for bolting tendency in short season greenhouse or field conditions.

C600CMS was developed by crossing the MS of NB1 to C5600. From the BC$_1$, two families were selected and two additional backcrosses were completed. In field and greenhouse tests, C600CMS appear to be identical for plant type and bolting response.

Seed for research and breeding purposes may be obtained and small quantities distributed upon written request by the U.S. Agricultural Research Station, Salinas, CA 93905.

References and Notes

REGISTRATION OF FIVE PREHARVEST SPROUTING-RESISTANT HARD WHITE WINTER WHEAT GERMLASM LINES

Five germplasm lines (Reg. no. GP-288 to GP-292) (PI 520756 to PI 520760) of preharvest sprouting-resistant hard white winter wheat (Triticum aestivum L.) were developed and released by the Kansas Agricultural Experiment Station in 1988. These advanced generation lines incorporate preharvest sprouting resistance into desirable germplasm for breeding improved cultivars in the central and southern U.S. Great Plains.

The male parent, 'Clark's Cream' (PI 476305), is exceptionally resistant to preharvest sprouting of white wheats in humid environments for late maturing, and low in combining ability for desirable plant type, making it unsuitable as parent material for cultivar development. Five preharvest sprouting-resistant hard white winter wheat genotypes were identified (Table 1); they have improved plant type, low bolting tendency, high grain yield potential, and high grain protein potential.

Table 1. Pedigrees, preharvest sprouting resistance, and plant type characteristics of Clark's Cream and five preharvest sprouting-resistant hard white winter wheat germplasm lines.

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Resistance to Preharvest Sprouting</th>
<th>Plant Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark's Cream</td>
<td>High</td>
<td>Semi-dwarf Awned</td>
</tr>
<tr>
<td>GP-288</td>
<td>High</td>
<td>Tall Awnless</td>
</tr>
<tr>
<td>GP-289</td>
<td>High</td>
<td>Low Awnless</td>
</tr>
<tr>
<td>GP-290</td>
<td>High</td>
<td>Low Awnless</td>
</tr>
<tr>
<td>GP-291</td>
<td>High</td>
<td>Low Awnless</td>
</tr>
<tr>
<td>GP-292</td>
<td>High</td>
<td>Low Awnless</td>
</tr>
</tbody>
</table>