normal conditions will not accept dent corn pollen. Its maturity ranges from mid- to full-season with the majority of the plants in the mid-season category. The stalk quality is above average when compared to the performances of the original hybrids.

K. E. ZIEGLER* (3)

References and Notes


Published in Crop Sci. 30:238–239 (1990).

REGISTRATION OF NDSAB(MS)C8, NDSB(MS)C8(LM)C3, AND NDSG(MS)C8(LM)C3 MAIZE GERMPLASM

THREE MAIZE (Zea mays L.) (Reg. no. GP-208, GP-209, and GP-210, PI 533626, PI 533627, and PI 533628) breeding populations developed at the Agricultural Experiment Station, North Dakota State University, Fargo, were released in March 1989 for breeding programs for short-growing season areas. Breeder seedstocks are maintained by the North Dakota Agriculture Experiment Station and can be obtained from NDSA(MS)C8, NDSB(MS)C8(LM)C3, AND NDSG(MS)C8(LM)C3 seed was bulked each cycle from 30 ears (half-sib families) having the lowest moisture content to give an improved population. Selection intensity was approximately 10 % from among plants evaluated for moisture content at approximately 40 d post pollination.

NDSB(MS)C8 averaged significantly higher (14.5%) grain yield over eight environments than the previously released version of NDSB. It did not differ significantly from NDSB for harvest moisture and percent lodging. NDSB(MS)C8(LM)C3's grain yield and stalk lodging performance was similar to NDSB(MS)C8, but it was significantly earlier as indicated by lower ear moisture at harvest (67.4 g kg⁻¹ over eight environments). The performance of NDSG(MS)C8(LM)C3 was similar to its parental strain for grain yield and lodging percentage. However, ear moisture at harvest in 1988 tests (40.3 g kg⁻¹ over four environments) was significantly lower than the parental strain. NDSG(MS)C8(LM)C3 tends to be more susceptible to root lodging than NDSB(MS)C8(LM)C3. NDSB and NDSG have proven to be productive source populations (ND247 and ND258 were selected from NDSB, and ND260 was developed from NDSB), and NDSB(MS)C8 and NDSG(MS)C8(LM)C3 appear to be equal to or better than the previously released versions. Thus, it appears that they should be promising source populations for developing early hybrids. Also, NDSB(MS)C8 and NDSG(MS)C8 have been the highest yielding synthetics in previous tests (6), indicating that these improved versions should be capable of producing very early, high yielding hybrids.

H. Z. CROSS* (7)

References and Notes

7. Dep. of Crop and Weed Sciences, North Dakota State Univ., Fargo, ND 58105. Published with the approval of the director of the North Dakota Agric. Exp. Stn. as Journal Article no. 1781. Registration by CSSA. Accepted 30 June 1989. *Corresponding author.

Published in Crop Sci. 30:239 (1990).

REGISTRATION OF GTPP7R(H)C5 WHITE SEEDED, TAN PLANT, AND FOLIAR DISEASE RESISTANT SORGHUM GERMPLASM POPULATION

GTPP7R(H)C5 (Reg. no. GP-235, PI 533653), a randomized Sorghum bicolor (L.) Moench germplasm population was developed and released cooperatively by the University of Georgia, Texas A&M University, and the USDA-ARS during June 1989. It is white-seeded (without mesocarp, no pigmented testa), tan plant, foliar disease resistant, and has open to semi-open panicles. GTPP7R(H)C5 was developed from TP24R, a population synthesized in 1978 at Texas A&M University, College Station, Texas by F.R. Miller. Three grams each from 950 individually selected fertility restorer (R) lines, with white pericarp (no undercoat) and