REGISTRATION OF 'CROCKETT' SOYBEAN

'CROCKETT' SOYBEAN [Glycine max (L.) Merr.] (Reg. No. 248, PI 535807) was developed by the Texas Agricultural Experiment Station. It was released because of its resistance to foliar-feeding insects, frogeye leafspot (caused by Cercospora sojina Hara), and stem canker [caused by Diaporthe phaseolorum (Cke. & Ell.) Sacc. var. caulivora Athow & Caldwell].

Crockett originated from the cross 'Hampton 266A' × PI 171451. Pollination and generation advances to the F5 were made in South Carolina. In 1973, F5 lines were selected for resistance to feeding by the Mexican bean beetle (Epilachna varivestis Mulsant) at Blackville, SC. These lines were planted in a winter nursery at Guaiaba, Brazil, and single plants resistant to velvetbean caterpillar (VBC) (Anticarsia gemmatalis Hübner) defoliation were selected. In 1974 progeny of selected plants were grown in rows at Guaiaba, Brazil. Rows resistant to VBC were harvested. Advanced lines were further evaluated for feeding by VBC at Isabela, Puerto Rico, in 1976–1977 and at Beaumont, TX, in 1978. A line designated as TsB78-3495 was selected and tested from 1979 to 1982 in the Host Plant Resistance Nursery conducted by the Southern Research Information Exchange Group on Host-plant Resistance to Soybean Insects (SRIEG-32) at twelve locations in the South. In 1982, single F13 plants were selected from TsB78-3495 at Beaumont and sent to a winter nursery at Isabela for seed increase. In 1983 at Beaumont, F14 lines from this cross were selected for plant type and resistance to VBC defoliation. From 1984–1987 Crockett was tested as TsB83-5387 for insect, stem canker, and frogeye leafspot resistance, agronomic performance, and resistance to fusarium root rot (Fusarium oxysporum). TsB83-5387 was advanced to the Uniform Group VIII Test in 1987 and the Uniform Group VIII Test in 1988 of the Uniform Soybean Tests, Southern Region.

Based on data from Beaumont, TX, Crockett was released because it matured 1 d later and lodged slightly more than 'Dowling' (1) (1.0 compared to 1.6, on scale of 1 to 5 with 5 being most severe). Crockett is 8 cm taller than Dowling.

Distinguishing characteristics include pincushion-like tawny pubescence, and tan pod walls at maturity. The seeds are dull yellow with brown hilum. The plants are bushy with few branches. The leaves are large and have a distinctive light green color early in the season that becomes dark green later in the season. Crockett has resistance to defoliating insects, stem canker, and frogeye leafspot, and is moderately resistant to brown spot (Septoria glycines L.). It has good seed quality and seedling vigor. Crockett is susceptible to soybean cyst nematode (Heterodera glycines Ichinohe) Race 3 and 4, southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood], and to the southern green stinkbug (Nezara viridula Henni) and to the southern green stinkbug (Melanotus arenatus). Crockett has shown tolerance to m ethribuzin.

Breeder seed of Crockett was distributed by the Texas Agricultural Experiment Station at Beaumont to producers of breeder seed.

G. R. Bowers Jr.*

References and Notes

2. Texas Agric. Exp. Stn., Ft. 7, Box 999, Beaumont, TX 77701, or from DSIR, Palmerston North, New Zealand.


REGISTRATION OF TETRAPLOID HYBRID CLOVER GERMPLASM FROM THE CROSS OF TRIFOLIUM AMBIGUUM × T. REPENS

A tetraploid (2n = 4x = 32) (Reg no. GP-82, PI 535809) hybrid clover from the cross of T. ambiguum (2n = 4x = 32) × T. repens (2n = 4x = 32) was jointly released by the Grasslands Division, DSIR, New Zealand, and the Kentucky Agricultural Experiment Station in 1989. The tetraploid clone (designated hybrid 435) was produced using embryo rescue by E.G. Williams (1) in New Zealand, and has been made available to researchers in New Zealand and the United States.

Hybrid 435 is not usable directly as a cultivar but provides valuable source material for introgression of genes from one parent to the other, or possibly to develop a hybrid population.

Up to 5 rooted propagules of hybrid 435 may be obtained from the Department of Agronomy, Agronomic Bldg. N., University of Kentucky, Lexington, KY 40506, or from DSIR, Palmerston North, New Zealand.