Florida Agricultural Experiment Station and foundation seed by the Florida Foundation Seed Producers, P.O. Box 309, Greenwood, FL 32443.


REGISTRATION OF 'JACKSON'
ANNUAL RYEGRASS

'JACKSON' (Reg. no. 135, PI 537260) annual ryegrass (Lolium multiflorum Lam.) was developed by the Mississippi Agricultural and Forestry Experiment Station and released on 5 July 1989. Jackson was selected from a population of 'Marshall' (1) annual ryegrass utilizing three cycles of phenotypic recurrent selection for resistance to crown rust caused by Puccinia coronata Corda. Seedlings were screened in each cycle by artificially inoculating the same genotypes at 6, 8, and 10 wk of age with urediospores of P. coronata in the greenhouse. Only seedlings that failed to develop rust symptoms after three inoculations during each cycle were selected. Selections from each cycle were transplanted to the field for seed increase. Jackson was evaluated as MSR-86-1.

Jackson is an intermediate to late maturing diploid (2n = 14) cultivar. It is 5 to 7 d later than 'Gulf and 8 to 13 d earlier than Marshall. It is tall, erect-growing, and wide-leafed and possesses good seedling vigor. Jackson is highly cold tolerant, with cold tolerance only slightly less than that of Marshall, one of the most cold-tolerant annual ryegrass cultivars (1).

Jackson exhibited good forage yield potential in trials throughout the southeastern USA from 1987 to 1989. Forage yields of Jackson are similar to those of Gulf and Marshall. Average daily gains of beef steers grazing Jackson at the Brown Loam Branch Experiment Station, Raymond, MS, in 1989 were similar to those grazing Marshall; however, Jackson resulted in 13 more total grazing days than Marshall.

Jackson is highly resistant to crown rust under field conditions. Crown rust resistance ratings for Jackson have generally been slightly superior to those of Marshall (a resistant cultivar) in regional evaluations from 1987 to 1989. Breeder seed will be maintained by the Mississippi Agricultural and Forestry Experiment Station, Institute of Food and Agricultural Sciences, University of Florida, Gainesville. Beyond breeder seed is limited to one generation each of foundation, registered, and certified. Foundation seed will be produced under the direction of Mississippi Foundation Seed Stocks, Box 5267, Mississippi State, MS 39762. Application (no. 8900327) has been made for United States Plant Variety Protection.

C. E. Watson, Jr.,* S. D. McLean, and N. C. Edwards, Jr. (2)

REGISTRATION OF 'TRANSVALA'
DIGITGRASS

'TRANSVALA' digitgrass (Digitaria decumbens Stent.) (Reg. no. 137, PI 299601) is a selected digitgrass which has resistance to the sting nematode (Belonolaimus longicaudatus Rau) and to Pangola Stunt Virus (PSV) transmitted by the planthopper vector Sogata furcifera Horvath. It was selected after intensive testing at the University of Florida and other cooperating locations in Surinam, Guyana, Brazil, Guadeloupe, Jamaica, El Salvador, and Colombia. Transvala was tested as UF547 and UFI and was released in April 1973 by the Florida Agricultural Experiment Station, Institute of Food and Agriculture, University of Florida (1). Other accessions introduced from South Africa were found identical to Transvala in taxonomy, morphology, chromosome number, leaf anatomy, and embryo-sac development. The four identical accessions were PI 299601, PI 299752, PI 299837, and PI 364619. The four Pis were never bulked, but all were named Transvala. It is a vegetatively propagated triploid with 3x = 27 chromosomes.

Transvala is a stoloniferous perennial with narrow but very abundant upright leaves. A key method of identification is the presence of tubercle-based hairs on the upper surface of the leaf blade adjacent to the collar. The number of tubercle hairs range from 3 to 20 per leaf. The remaining leaf and sheath surfaces are glabrous. The ligule is free-standing and 1.0 to 1.5 mm in length. The stoloniferous vegetative stems have pubescence at the nodes and rapidly form roots from each node in contact with the soil. The inflorescence of Transvala is a compound spike-like raceme usually composed of one whorl, with three to four spike-like racemes making up each inflorescence. This cultivar establishes readily, spreads quickly from vegetative planting material, and forms a dense sward when properly fertilized.

Clipping and grazing experiments have been conducted in replicated trials at Gainesville, FL, and also at the Agricul-


REGISTRATION OF 'TRANSVALA'
DIGITGRASS

'TRANSVALA' digitgrass (Digitaria decumbens Stent.) (Reg. no. 137, PI 299601) is a selected digitgrass which has resistance to the sting nematode (Belonolaimus longicaudatus Rau) and to Pangola Stunt Virus (PSV) transmitted by the planthopper vector Sogata furcifera Horvath. It was selected after intensive testing at the University of Florida and other cooperating locations in Surinam, Guyana, Brazil, Guadeloupe, Jamaica, El Salvador, and Colombia. Transvala was tested as UF547 and UFI and was released in April 1973 by the Florida Agricultural Experiment Station, Institute of Food and Agriculture, University of Florida (1). Other accessions introduced from South Africa were found identical to Transvala in taxonomy, morphology, chromosome number, leaf anatomy, and embryo-sac development. The four identical accessions were PI 299601, PI 299752, PI 299837, and PI 364619. The four Pis were never bulked, but all were named Transvala. It is a vegetatively propagated triploid with 3x = 27 chromosomes.

Transvala is a stoloniferous perennial with narrow but very abundant upright leaves. A key method of identification is the presence of tubercle-based hairs on the upper surface of the leaf blade adjacent to the collar. The number of tubercle hairs range from 3 to 20 per leaf. The remaining leaf and sheath surfaces are glabrous. The ligule is free-standing and 1.0 to 1.5 mm in length. The stoloniferous vegetative stems have pubescence at the nodes and rapidly form roots from each node in contact with the soil. The inflorescence of Transvala is a compound spike-like raceme usually composed of one whorl, with three to four spike-like racemes making up each inflorescence. This cultivar establishes readily, spreads quickly from vegetative planting material, and forms a dense sward when properly fertilized.

Clipping and grazing experiments have been conducted in replicated trials at Gainesville, FL, and also at the Agricul-