erately susceptible to tan spot (caused by Pyrenophora tritici-
repentis (Died.) Drechs.). moderately resistant to kernel
smudge and root rot (caused by Cochliobolus sativus Ito &
Kuribayashi) and septoria leaf spot (caused by Septoria spp.).

The quality of Kyle is equal to Hercules, making it eligible
for the grades of Canada Western Amber Durum. It has
medium semolina yield, slightly lower protein content than
Hercules, high pigment content, and good pasta cooking
quality. The gluten of Kyle is strong.

A more detailed description has been published (1). Breeder
seed will be maintained by the Seed Section, Agriculture
Canada Experimental Farm, Indian Head, SK, S0G 2K0.
Kyle has been released to SeCan Assoc., Suite 512, 855
Meadowlands Dr., Ottawa, ON, K2C 3N2 for distribution.

REGISTRATION OF GERmplASMS

REGISTRATION OF KY-1 KURA CLOVER
GERmplASM

Ky-1 germplasm of kura clover (Trifolium ambiguum Bieb.
(Reg. no. GP-90, PI 540894) was released by the Kentucky
Agric. Exp. Stn. in 1990. This germplasm is the sixth cycle
of phenotypic recurrent selection for first-year blooming. The
base population was PI 325489, subsequently released as
‘Rhizo’ (1). Chromosome number is 6x = 48.

Selection was conducted by sowing seeds in a greenhouse
and transplanting them to a field late in the spring, so that
they were not exposed to below freezing temperatures. Plants
were scored for blooming in the first season and only the
most strongly flowering were allowed to intercross. Seed
heads from selected plants were harvested and threshed. The
number of seeds per head and per plant were calculated.

Seed from high-yielding genotypes were selected for the next
generation. Recurrent selection was continued for six gen-
erations. Number of plants within generations varied from
1580 to 5426. Selection intensity for first-year flowering
ranged from 2.0 to 4.9%. Progenies representing the six gen-
erations were evaluated in 1987 and 1988 in plots and as
spaced plants in a manner similar to the selection experi-
ments. Seed of Ky-1 was harvested in 1988 from 26 plants
of Generation 6 that had been randomly intercrossed with
approximately the same numbers of plants of each of the other
five generations and six generations of plants selected for sec-
ond-year blooming. Ten plants of the base generation were
also included, for a total of 322 plants as male parents.

In the first year of the plot experiment, number of flower
heads per square meter on 1 Oct. 1987 for Ky-1 was 25.0,
compared with 0.0 for the base population (Rhizo). Re-
spective figures for Generations 1 to 5 were 1.3, 12.3, 23.3,
20.0, and 26.8.

Although flowering of Ky-1 in the year of sowing was sig-
nificantly increased over that of the base population, vigor
was less, probably due to inbreeding during the selection
process. Additional improvement will be necessary before
the material will be ready for release as a cultivar; never-
theless, the germplasm contains genetic material that should
be useful for further selection.

Up to 2 g of seed of Ky-1 germplasm may be obtained
upon written request and agreement to make appropriate
recognition of the source when this germplasm contributes
to the development of a new cultivar, hybrid, or germplasm.
Request seeds from the Department of Agronomy, Agricul-
tural Science Bldg.-North, University of Kentucky, Lexing-
ton KY 40546-0091.

REGISTRATION OF B92 GERmplASM INBRED
LINE OF MAIZE

Inbred B92 (Zea mays L.) (Reg. no. GP-226, PI 539870) is
a yellow dent inbred line developed cooperatively by the
Iowa Agriculture and Home Economics Experiment Station
and the Cereal and Soybean Research Unit, USDA-ARS.

The line was released in 1990 because of its potential value
in breeding programs of the hybrid seed industry. Breeder
seed of the line, produced by self-pollination, is maintained
by the Iowa Agriculture and Home Economics Experiment
Station and distributed (100 seeds per sample) by the Com-
mitee for Agricultural Development, Department of Agron-
omy, Iowa State University.

Inbred B92 was developed from backcross population
(B70 × H99) × B70 to obtain a line agronomically similar
to B70, but with improved resistance to root and stalk lodg-
ing. The line was developed by selection and self-pollination
in ear-to-row progenies for seven generations. The dates of
tassel shed and silk emergence are 3 to 4 d earlier than for
B73, with 2 to 3 d delay for silk emergence. Pollen production
and silk emergence are good. Plant and ear heights are in-
termEDIATE, 150 and 65 cm, respectively. Plants produce one
ear per stalk at moderate plant densities, and usually do not
have a second ear at low densities. Kernels have intermediate
thickness, similar width and depth, smooth dent, and large
size. The kernels are borne on a red cob with 12 to 14 rows,