REGISTRATION OF ‘PHYTER’ TALL FESCUE

‘PHYTER’ tall fescue (Festuca arundinacea Schreb.) (Reg. no. CV-42, PI 538330) is a low-endophyte, hay and pasture use cultivar developed and released in August 1986 by FFR Cooperative. Its experimental designation is FFR Syn W.

Phyter is an 11-clone synthetic, whose parentage traces to ‘Kentucky-31’. Seven hundred tall fescue plants were selected in 1973 from several Kentucky-31 seed fields estimated to be at least 15 years old. Selection was based on color, vigor, and general appearance. Selected clones were established at West Lafayette, IN, in a replicated polycross block in 1974. Polycross progeny seed was harvested in 1975 and used to plant solid-seeded progeny plots in 1976. In 1979, 120 selections were made from these progeny plots based on height and vigor and placed in a space-planted nursery at West Lafayette, IN. The 11 clones of Phyter were selected from this material in 1981, based on clonal evaluations for spring vigor, summer and fall color, and moisture content of summer regrowth herbage.

Phyter’s area of adaptation is similar to that of Kentucky-31. It is similar to Kentucky-31 in heading date and several days later than ‘Fawn’, ‘Forager’, and ‘Au-Triumph’. Color ratings show Phyter to be darker in color and to have a higher moisture content in summer regrowth herbage than Kentucky-31. Resistance of Phyter to crown rust (caused by Puccinia coronata Cda.) and stem rust (caused by Puccinia graminis Pers.:Pers.) is similar to Kentucky-31 and higher than ‘Kenhy’.

Phyter will be maintained as a three-generation cultivar: breeder, foundation and certified. Certified seed may be grown from either breeder or foundation seed. Vegetative portions of the 11 original clones are maintained by FFR Cooperative at West Lafayette, IN.

Phyter will be maintained as a three-generation cultivar: breeder, foundation and certified. Certified seed may be grown from either breeder or foundation seed. Vegetative portions of the 11 original clones are maintained by FFR Cooperative at West Lafayette, IN.


REGISTRATION OF ‘DELMAR’ ST. AUGUSTINEGRASS

‘DELMAR’ St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntz] (Reg. no. CV-138, PI 543946) designation 672-99, was developed by O.M. Scott & Sons Company. It was released by O.M. Scott & Sons in September 1986. DelMar was selected from the controlled pollination of ‘Seville’ St. Augustinegrass (U.S. Patent 4097) with pollen from a cold-tolerated, clonal selection obtained from Memphis, TN. DelMar was propagated by stolons to provide genetic stock for studying performance and for release to commercially available cultivars.

The internodes of DelMar are shorter than those of most commonly grown St. Augustinegrasses. Blade and leaf sheath lengths are significantly shorter than ‘Floratam’, a widely grown cultivar in Florida. DelMar has a shorter leaf blade length between DelMar and Floratam, but the blade length is equal to that of the other St. Augustinegrasses. DelMar has a longer peduncle, and a larger flag leaf sheath than other St. Augustinegrasses except Floratam. Field observations in comparison with other commercially available cultivars in Florida and Texas for >15 yr indicate that DelMar has good turf quality characteristics throughout the year. DelMar produces few flowering spikes, which improves the overall quality of the cultivar.

DelMar has shown resistance to St. Augustinegrass decline virus in laboratory tests, and in field studies DelMar has shown a good level of resistance to gray leaf blight (caused by Piricularia grisea (Coke) Sacc.) and stem rot (caused by Sclerotinia spp.). DelMar has also shown resistance to chinchbugs (Blissus spp.) and sod webworms, which is equal to most other St. Augustinegrasses.

Vegetative propagation of DelMar is limited to two cycles of increase from breeder sod: one of foundation sod and one of commercial sod. Breeder sod is maintained by O.M. Scott & Sons and small quantities of vegetative material are available for evaluation. U.S. Plant Patent 6372 has been issued for DelMar.

T. P. RIORDAN,* W. C. MIXSON, AND V. D. MEIER

References and Notes


Published in Crop Sci. 31:482 (1991).