from 1986 to 1989 and in Uniform Soybean Tests, Northern States (USTNS), from 1987 to 1989. HM8625 was named Chapman in honor of John ("Johnny Appleseed") Chapman, a legendary Ohioan.

Chapman has purple flowers, gray pubescence, brown pods, shiny yellow seeds, and imperfect black hila. It is a late Group II indeterminate cultivar, and is generally adapted from 40 to 42° N lat. Chapman is intermediate in maturity, plant height, lodging resistance, and seed protein content to the earlier, Pmg-susceptible 'Kenwood' and the later, Pmg-resistant 'Burlison' (1). Compared with Burlison, Chapman is 10 and 3% higher in yield in regional and state tests, respectively. Its oil content is superior (21.7%, dry wt. basis) to Burlison (19.3%).

Chapman is resistant to Pmg Races 1, 3, 4, and 16, but tested susceptible to Races 7 and 10 (other races from 2 to 25 were not tested). The original source of resistance is PI 82263-2, for which the genotype has not been identified. It is moderately resistant to purple seed stain [caused by Cer- cospora kikuchii (Matsumoto & Tomoyasu) M.W. Gardner] and pod and stem blight [caused by Diaporthe phaseolorum (Cooke & Ellis) Sacc.].

Breeder seed of Chapman was distributed to foundation seed organizations in Illinois, Indiana, Nebraska, and Ohio for increase in 1990. Breeder seed will be maintained by the Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH 44691. Protection for Chapman under the Plant Variety Protection Act, Title V, is pending.


REGISTRATION OF 'HAVES' SOYBEAN

'HAVES' soybean [Glycine max (L.) Merr.] (Reg. no. CV-277, PI 542709) was developed by the Ohio Agricultural Research and Development Center, the Ohio State University (OARDC-OSU). It was released in 1989 because of its productive capacity under less favorable environments and its multi-race resistance to phytophthora rot caused by Phytophthora megasperma f. sp. glycinea (Drechs.) I. sp. glycinea T. Kuan & D.C. Erwin (Pmg). Hayes is available under license with the Ohio State University.

Hayes originated as an F3 line from the cross 'Amcor' × L24 (3,6). L24 is a 'Williams' (1) backcross population closely related to 'Williams 82' (2) with the Rps-17 gene. The cross, designated OX7939, was made by A.K. Walker at OARDC-OSU in summer 1979 and generations advanced utilizing the winter nursery in Puerto Rico in cooperation with the Iowa State University. The F3 (from bulk harvest of F2) was grown in Ohio in 1981 and it was the source for 32 plant selections, including OX7939-5. OX7939-5, one of 10 F4 (F3-derived) lines, was selected for Pmg resistance based on performance at the Pmg nursery near Vickery, OH, in 1982. Yield tests were conducted in 1982, 1983, and 1984 in Ohio. OX7939-5 was redesignated HM8482 prior to entry in the 1985 Uniform Soybean Tests, Northern States. It was evaluated from 1985 to 1988 in Ohio tests. HM8482 is named Hayes in honor of Rutherford B. Hayes, a former President of the United States from Ohio.

Hayes has purple flowers, gray pubescence, brown pods, and shiny yellow seed with imperfect black hila. It is a Maturity Group III indeterminate soybean, and is generally adapted from 39 to 41° N lat. In comparison with 'Resnik' (4), it is up to 2 d earlier and 6% higher yielding in 11 low-yield environments (<2.9 Mg ha⁻¹) and equal in yield across all 35 Ohio tests (5).

Hayes carries the Rsp-17 gene for resistance to Pmg.

Breeder seed of Hayes was distributed to Ohio Foundation Seeds, Inc., the foundation seed organization in Ohio, for increase in 1988. Breeder seed will be maintained by the Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH 44691. Protection under Title V of the Plant Variety Protection Act is pending.


References and Notes


REGISTRATION OF 'EDISON' SOYBEAN

'EDISON' soybean [Glycine max (L.) Merr.] (Reg. no. CV-279, PI 542711) was developed by the Ohio Agricultural Research and Development Center of the Ohio State University (OARDC-OSU). It was released in 1990 because of its combination of high yield, maturity, and multi-race resistance to phytophthora rot caused by Phytophthora me-