Leaf rust (Puccinia recondita Roberge ex Desmaz) and bacterial leaf blight (Xanthomonas campestris pv. translucens) resistance of Sunland is superior to that of Beagle 82 and Florida 201. In seedling evaluations for leaf rust resistance at the USDA-ARS Cereal Rust Laboratory, Sunland exhibited high levels of seedling resistance to 17 races of P. recondita collected from wheat and triticale. In the same evaluation, Beagle 82 exhibited high to intermediate resistance to 15 of the 17 races and Florida 201 was resistant to only 8 of the 17 races. Sunland is moderately resistant to leaf blotch, incited by Bipolaris sorokiniana (Sacc.) Shoemaker and moderately susceptible to septoria nodorum blotch, incited by Stagonospora nodorum (Berk.) Castellani & E.G. Germano. No infection by powdery mildew (Erysiphe graminis DC. f. sp. tritici Em. Marchal), loose smut (Ustilago tritici Pers.) Rostr., or ergot (Claviceps purpurea (Fr.:Fr.) Tul.) has been observed on this cultivar in Florida and Georgia. Sunland is resistant to Hessian fly [Mayetiola destructor (Say.) biotype D], but susceptible to the mixed Hessian fly by biontype populations of the southeastern USA and may suffer some damage from heavy infestations.

Breeder seed will be maintained by the Florida Agricultural Experiment Station. Foundation seed will be maintained by Florida and Georgia Foundation Seed Programs. Sunland will not be protected under the Plant Variety Protection Act.


References and Notes

1. P.L. Bruckner, Dep. of Agronomy, Univ. of Georgia, Coastal Plain Stn., tifton, GA 31793; R.D. Barnett, Univ. of Florida, North Florida Res. and Educ. Ctr., Route 3, Box 4370, Quincy Fl 32351; J.W. Johnson, Dep. of Agronomy, and B.M. Cunfer, Dep. of Plant Pathology, Univ. of Georgia, Georgia Stn, Griffin, GA 30223. Contribution from the Univ. of Georgia Agric. Exp. Stn., and the Univ. of Florida Agric. Exp. Stn. This research was supported by state and federal funds and is allocated to the Georgia and Florida Agric. Exp. Stns. Registration by CSSA. Accepted 30 Apr. 1991. *Corresponding author.


REGISTRATION OF ‘TAMSPAN 90’ PEANUT

‘TAMSPAN 90’ (Reg. no. CV-44, PI 550721) is a Spanish market-type peanut (Arachis hypogaea L. spp. fastigiate var. vulgaris) with good resistance to both pod rot (Pythium myriotylum Drechs.) and sclerotinia blight (Sclerotinia minor Jagger) released by the Texas Agricultural Experiment Station, Texas A&M University System, and the USDA-ARS in April 1990. Tamspan 90 was identified as Tx798736-l in evaluation stages.

Tamspan 90 is a typical Spanish type peanut with vegetative growth, physical appearance, rate of growth, foliage density, and main stem height all similar to ‘Starr.’ The foliage color is slightly darker green than Starr. Pods of Tamspan 90 are slightly larger and have less constriction than Starr. Pod reticulation is moderate, and most pods have two seeds, but the percentage of three-seeded pods is greater in Tamspan 90 (2-5%) than in Starr (<1%). Seed are round and tan in color, but are slightly larger than Starr.

Tamspan 90 was derived by mass selection from the germplasm line TxA-54-2. TxA-54-2 was derived from ‘Toalson’ X UF 734022. The F₃ generation was grown in pythium-infested soil and advanced by the modified bulk method with selection for plant form; pod shape, size, and distribution; and absence of disease. Plants of the F₄ generation, also grown on pythium-infested soil, were selected using similar criteria but not bulked. The F₅ selections were evaluated in pythium-infested soil as plant rows in 1979. Yield testing was initiated in 1980. Pure seed increase was started in 1984 from randomly selected spaced seed derived from yield plot samples. Pods of 203 of the single-plant derived progenies were classified visually for pod size and shape, and shelled for comparisons of grade characteristics. Thirty-nine progenies with pods of moderate constrictions, uniform size, and high shelling percentages were selected. Remnant seed were retained of each line and the remainder compositied for multiple-location yield tests in 1987. Remnant seed from the components were planted for increase in the greenhouse and Puerto Rico during the winter of 1987-1988. Sufficient seed were produced for advance of all 39 progenies. Roguing for uniformity was minor except for one progeny with apparent outcrossing with a Virginia-type peanut, which was discarded. Seed of the 38 sister lines were harvested and blended for the foundation seed increase. Approximately 450 g of each of the 38 sister lines were placed in cold storage as the breeder reserve. From this stored lot, future breeder seed increases will be made.

In 22 cultivar and cannibis tests located in nine counties in Texas from 1987 to 1989, Tamspan 90 averaged 10.5% higher in gross value per hectare than Starr (significant, P=0.05). Grades for the two entries were similar. Under varying levels of sclerotinia blight pressure, Tamspan 90 produced 10 to 48% higher value per hectare than Starr.

The percentages of oil and protein for Tamspan 90 and Starr are essentially equal, and the oleic/linoleic fatty acid ratios are similar. Shelling properties of the two varieties are similar, but recognition must be given for the larger seed of Tamspan 90.

Seed of Tamspan 90 will be maintained by Foundation Seed Services, Texas A&M University, College Station, TX 77843-2474.

O. D. Smith,* C. E. Simpson, W. J. Grichar, and H. A. Melouk (2)

References and Notes


REGISTRATION OF ‘CATHY’ RAPESEED

‘CATHY’ winter rapeseed [Brassica napus L. spp. oleifera (Mertzg.) Sinsk. f. biennis] (Reg. no. CV-9, PI 540458) is a canola quality, synthetic cultivar developed for Agrigenetics Company, a division of Lubrizol Corp. at Eastlake, OH, by the University of Idaho Agricultural Experiment Station at Moscow, ID. Cathy was released in 1990. The three parental lines of Cathy were selected in the F₂ generation from crosses between ‘Indore’ and either ‘Brink’ or ‘Sipal’. Indore is a low glucosinolate, high erucic acid industrial-quality rapeseed