dition, both inbred lines can be used as R-lines to restore fertility to Al cytoplasmic-genetic male-sterile lines.

Both A2Tx636 and A2Tx637 are single-seeded with panicles that are semi-compact to slightly open at maturity. A2Tx636 is tropically adapted whereas A2Tx637 is more temperately adapted. Both have high levels of green leaf retention at maturity as well as high levels of foliar disease resistance. These lines have tolerance to downy mildew (*Peronosclerospora sorghi* (W. Weston & Uppal) C. G. Shaw) except pathotype 3, head smut (*Sporisorium holcisorghi* (Rivolta) K. Vánky), leaf blight (*Exserohilum turcicum* K.J. Leonard & E.G. Suggs), zonate leaf spot (*Gloeocercospora sorghi* (Bain & Edgerton ex Deighton)), and anthracnose (*Colletotrichum graminicola* (Ces.) G.W. Wils.).

These materials appear to be adapted across an array of environments and produce hybrids with medium maturity (ATx378*RTx433), excellent red color, excellent grain color and quality, good height and standability, and improved disease resistance without using the conventional A1 (milo/kafir) cytoplasmic–genetic male-sterility system. This broadens the germplasm diversity among A2 females and provides the basis for further identification of pools in sorghum. Both A2Tx636 and A2Tx637 will be hardy throughout the U.S. sorghum belt as females or R-lines to the A1 system.

Breeder seed will be maintained at Texas A&M University, Department of Soil & Crop Sciences, College Station, TX 77843-2474.

References and Notes

1. F. R. Miller,* T. F. Dusek, and K. L. Prihoda (1)

Published March, 1992

REGISTRATION OF T171 PARENTAL LINE OF MAIZE

T171 (Reg. no. PL-159, PI 548783) is an inbred line of white dent maize (*Zea mays* L.) developed at the Tennessee Agricultural Experiment Station. Following evaluation as an inbred and as a parent in hybrid yield trials, T171 was released in January 1991 for its potential value in hybrid seed production and breeding for white-grained hybrids adapted to the southern USA.

Inbred T171 was developed from (*B73 × C.I.66*)F2 × B73, in a project to convert elite yellow lines to white grain. Progeny from the backcross population were advanced six generations by self-fertilization and ear-to-row selection. The primary selection criteria during inbreeding were grain color and hardness, and plant health. Heat units required for 50% pollen shed in 1990 at Knoxville were 1411 for T171, and 1362 for B73. Plants of T171 have a less erect leaf angle than B73. In 1990, T171 plants were 25 cm shorter than B73 plants, but ear height was the same for both lines. Inbred T171 has an open tassel with a central spike and 8 to 12 lateral branches. Pollen shed is ample over a 4-d period, and green silks usually emerge 2 d after the onset of pollen shed. Ears of T171 have white cobs with 16 or 18 rows of kernels. Kernels are slightly larger than those of B73, with a higher proportion of vitreous endosperm.

Hybrid performance of T171 has been good in crosses to Mo17-derived white lines, unless the white source (i.e., T167 or FR810W) is inbred C.I.66. T171 as one parent have been tested in Tennessee for three years. Some T171 hybrids have exceeded FR810W by ≈5% in grain yield, and have =1% higher in grain moisture at harvest. Standability has been good, but grain moisture dry-down seems to be slower than for B73 hybrids.

Germlasm quantities (50 seeds) may be obtained from the Dep. of Plant and Soil Sciences, University of Tennessee, Knoxville, TN 37901-1071.

D. R. West,* D. R. Kincer, and C. R. Graves (1)

REFERENCES

1. Dept. of Soil & Crop Sciences, Texas A&M University, College Station, TX 77843. Registration by CSSA. Accepted by author.