at Arlington in 1982, plants of Rebound had = 10% of their leaf area covered with brown leafspot lesions, while plants of Badger showed no symptoms.

Badger is well-adapted to a wide range of soil types and climates in the north-central and northeastern USA. It has excellent winterhardiness and persistence under either a three-cut hay or rotationally grazed pasture management. It has produced average to above-average seed yields at locations ranging from 43 to 46° N lat in Wisconsin. Its primary intended uses are for hay or silage production under a three-cut system, in pure stands or mixtures with alfalfa, and for pasture in a rotational-grazing system.

Breeder seed of Badger smooth bromegrass will be maintained by the Department of Agronomy, University of Wisconsin–Madison. The exclusive rights to produce foundation and certified seed of Badger were assigned, in November 1990, to Agrecol, 4906 Femrite Dr., Madison, WI 53716. Seed multiplication of this cultivar will be limited to four generations advanced from breeder seed.

M. D. CASLER* AND P. N. DROLSOM (3)

References and Notes


REGISTRATION OF ‘PIKA’ WINTER TRITICALE

‘PIKA’ WINTER TRITICALE (× Triticosecale Wittmack) (Reg. no. CV-12, PI 547164), was developed by Alberta Agriculture Crop Research, Lacombe, AB, Canada. Pika was derived from 77 winter triticale lines, which were hand emasculated and pollinated with bulk pollen in 1980. The F₁ seeds were field planted at Lacombe in the fall of 1980 as composite 81DEO1. In 1981, the composite was bulk-harvested and replanted in the field. One hundred F₂ spikes were retained in 1982 for replanting as headrows. Pika was selected as an F₃ line in 1983 and subjected to further winterhardiness testing prior to evaluation for agronomic potential (1985–1989). In 1988, 250 F₃ headrows of Pika were grown at Hermiston, OR, from which 200 F₄ lines were bulk harvested as breeder seed.

Pika is a hexaploid (2n = 6x = 42), complete winter triticale similar in height (108 cm) and days to maturity (217d) to the winter triticale, ‘Wintri’. Pika demonstrates an improvement in winter survival (84 vs. 79%), yield potential (4.15 vs. 4.08 t ha⁻¹), seed protein (115 vs. 101 g kg⁻¹), and falling number (200 vs. 60) compared with Wintri.

During the period of 1987 to 1989, Pika was extensively tested at Lacombe for forage production as a spring-seeded monocrop and combined with barley (Hordeum vulgare L.) as a cut forage, a silage crop, and as rotational grazing pasture. Pika demonstrated an improvement in winter survival (84 vs. 79%), yield potential (10.08 t ha⁻¹) for forage production. In contrast, Pika grown with spring barley produced higher total yield potential (1985–1989). In 1988, 250 F₇ lines were selected as an F₇ line in 1983 and subjected to further winterhardiness testing prior to evaluation for agronomic potential. In 1988, 250 F₇ headrows of Pika were grown at Hermiston, OR, from which 200 F₈ lines were bulk harvested as breeder seed.

Pika is a hexaploid (2n = 6x = 42), complete winter triticale similar in height (108 cm) and days to maturity (217d) to the winter triticale, ‘Wintri’. Pika demonstrates an improvement in winter survival (84 vs. 79%), yield potential (4.15 vs. 4.08 t ha⁻¹), seed protein (115 vs. 101 g kg⁻¹), and falling number (200 vs. 60) compared with Wintri.

During the period of 1987 to 1989, Pika was extensively tested at Lacombe for forage production as a spring-seeded monocrop and combined with barley (Hordeum vulgare L.) as a cut forage, a silage crop, and as rotational grazing pasture. Pika demonstrated an improvement in winter survival (84 vs. 79%), yield potential (10.08 t ha⁻¹) for forage production. In contrast, Pika grown with spring barley produced higher total yield potential (1985–1989). In 1988, 250 F₇ lines were selected as an F₇ line in 1983 and subjected to further winterhardiness testing prior to evaluation for agronomic potential. In 1988, 250 F₇ headrows of Pika were grown at Hermiston, OR, from which 200 F₈ lines were bulk harvested as breeder seed.

Pika is a hexaploid (2n = 6x = 42), complete winter triticale similar in height (108 cm) and days to maturity (217d) to the winter triticale, ‘Wintri’. Pika demonstrates an improvement in winter survival (84 vs. 79%), yield potential (4.15 vs. 4.08 t ha⁻¹), seed protein (115 vs. 101 g kg⁻¹), and falling number (200 vs. 60) compared with Wintri.

During the period of 1987 to 1989, Pika was extensively tested at Lacombe for forage production as a spring-seeded monocrop and combined with barley (Hordeum vulgare L.) as a cut forage, a silage crop, and as rotational grazing pasture. Pika demonstrated an improvement in winter survival (84 vs. 79%), yield potential (10.08 t ha⁻¹) for forage production. In contrast, Pika grown with spring barley produced higher total yield potential (1985–1989). In 1988, 250 F₇ lines were selected as an F₇ line in 1983 and subjected to further winterhardiness testing prior to evaluation for agronomic potential. In 1988, 250 F₇ headrows of Pika were grown at Hermiston, OR, from which 200 F₈ lines were bulk harvested as breeder seed.

Pika is a hexaploid (2n = 6x = 42), complete winter triticale similar in height (108 cm) and days to maturity (217d) to the winter triticale, ‘Wintri’. Pika demonstrates an improvement in winter survival (84 vs. 79%), yield potential (4.15 vs. 4.08 t ha⁻¹), seed protein (115 vs. 101 g kg⁻¹), and falling number (200 vs. 60) compared with Wintri.

During the period of 1987 to 1989, Pika was extensively tested at Lacombe for forage production as a spring-seeded monocrop and combined with barley (Hordeum vulgare L.) as a cut forage, a silage crop, and as rotational grazing pasture. Pika demonstrated an improvement in winter survival (84 vs. 79%), yield potential (4.15 vs. 4.08 t ha⁻¹), seed protein (115 vs. 101 g kg⁻¹), and falling number (200 vs. 60) compared with Wintri.

During the period of 1987 to 1989, Pika was extensively tested at Lacombe for forage production as a spring-seeded monocrop and combined with barley (Hordeum vulgare L.) as a cut forage, a silage crop, and as rotational grazing pasture. Pika demonstrated an improvement in winter survival (84 vs. 79%), yield potential (4.15 vs. 4.08 t ha⁻¹), seed protein (115 vs. 101 g kg⁻¹), and falling number (200 vs. 60) compared with Wintri.

During the period of 1987 to 1989, Pika was extensively tested at Lacombe for forage production as a spring-seeded monocrop and combined with barley (Hordeum vulgare L.) as a cut forage, a silage crop, and as rotational grazing pasture. Pika demonstrated an improvement in winter survival (84 vs. 79%), yield potential (4.15 vs. 4.08 t ha⁻¹), seed protein (115 vs. 101 g kg⁻¹), and falling number (200 vs. 60) compared with Wintri.

During the period of 1987 to 1989, Pika was extensively tested at Lacombe for forage production as a spring-seeded monocrop and combined with barley (Hordeum vulgare L.) as a cut forage, a silage crop, and as rotational grazing pasture. Pika demonstrated an improvement in winter survival (84 vs. 79%), yield potential (4.15 vs. 4.08 t ha⁻¹), seed protein (115 vs. 101 g kg⁻¹), and falling number (200 vs. 60) compared with Wintri.

During the period of 1987 to 1989, Pika was extensively tested at Lacombe for forage production as a spring-seeded monocrop and combined with barley (Hordeum vulgare L.) as a cut forage, a silage crop, and as rotational grazing pasture. Pika demonstrated an improvement in winter survival (84 vs. 79%), yield potential (4.15 vs. 4.08 t ha⁻¹), seed protein (115 vs. 101 g kg⁻¹), and falling number (200 vs. 60) compared with Wintri.