yearling tester steers grazing Tifton 85 from mid-April to mid-October had average daily gains of 0.67 kg. Total production was 1160 kg of LWG ha\(^{-1}\) at a fertilizer cost of 12.5e kg\(^{-1}\) of gain.

Tifton 85 has survived in small plot clipping tests at Athens and Eatonton, GA, from 1988 to 1991. Yield data suggest that it is less winter hardy than Coastal and Tifton 44 bermudagrasses.

Stolons may grow >7.5 cm d\(^{-1}\) and develop roots and a plant at each node when soil moisture and growing conditions are favorable. These plants remain at the soil surface and rarely develop rhizomes. An extended freeze or fire can kill the new propagules making it necessary for the sod to establish again from the original plants. The buffering effect of the soil protects the original plants that were planted deeper. Deep planting and leaving a good cover of frosted grass can extend the northern limit of Tifton 85. A cover of dead grass can help to keep the grass dormant, which is necessary to slow the growth-back sequences that may be repeated several times until carbohydrate reserves are exhausted. A good frost-killed cover can maintain temperatures at the soil surface as much as 5.5 °C higher than the ambient air temperature.

Tifton 85 can be established by planting sprigs with mechanical planters. The cultivar can also be established by broadcasting and disk planting by planting at an advanced growth stage into moist soil. Stems should be cut for hay and baled immediately with a hay bale to facilitate handling. The soil should be packed with the tractor tires to establish capillarity needed to help keep the soil around the stems moist. Spraying with 2,4-D (2,4-dichlorophenoxyacetic acid) immediately after planting will keep weeds, including annual grasses, from emerging. Controlling weeds can permit Tifton 85, growing in a favorable environment, to completely cover the ground in <3 mo.

The University of Georgia Coastal Plain Experiment Station, Tifton, GA, will maintain breeder stock.

G. W. BURTON,* R. N. GATES, AND G. M. HILL (4)

References and Notes


Registration of 'Bengal' Rice

'Bengal' rice (Oryza sativa L.) (Reg. no. CV-92, PI 561735) is an early maturing, high yielding, medium-grain cultivar developed at the Rice Research Station at Crowley, LA, by the Louisiana Agricultural Experiment Station in cooperation with the USDA-ARS, the Arkansas Agricultural Experiment Station, the Mississippi Agricultural and Forestry Experiment Station, and the Texas Agricultural Experiment Station. Bengal was officially released 1 Mar. 1992.

Bengal originated from the cross 'MARS'/'M201'/MARS made at the Rice Research Station in 1983. M-201 (1) is an early maturing, semidwarf medium-grain cultivar released by the California Cooperative Rice Research Foundation. Mars (2) is a high yielding, early maturing medium-grain cultivar released by the USDA-ARS and the Arkansas Agricultural Experiment Station. The selection number of Bengal was 8720826. It was entered into the preliminary yield nursery (experimental designation 8802722) as an F\(_2\) bulk in 1988. Bengal was entered into the Louisiana Advanced Yield tests and the Uniform Regional Rice Nurseries (URRN) in 1989 with the designation RU8902183.

Bengal has a short-statured plant type and is highly resistant to lodging. In the URRN grown in Louisiana, Arkansas, Mississippi, and Texas from 1989 to 1991, the average height of Bengal was 96 cm and that of Mars, 'Orion', and 'Rico 1' was 118, 109, and 114 cm, respectively. The average number of days from emergence to 50% heading (URRN 1989-1991) was 82, 81, 81, and 83 for Bengal, Mars, Orion, and Rico 1, respectively.

The leaves of Bengal are dark green, erect, and glabrous. Seedling pubescence may be found on the lemma keel. Kernels have straw-colored hulls and apiculi.

The average grain yield of Bengal in the URRN in the four major rice-producing states in the southern USA from 1989 to 1991 was 8057 kg ha\(^{-1}\), compared with 7754 for Rico 1, 7217 for Orion, and 6773 for Mars. Milling yield averages (mg g\(^{-1}\) whole kernel: mg g\(^{-1}\) total milled rice) at 120 mg g\(^{-1}\) moisture from the URRN (1989-1991) were 632:722 (63:72%) for Bengal, 612:704 (61:70%) for Rico 1, 624:703 (62:70%) for Orion, and 6773 for Mars. Individual kernel dimensions for Bengal, Rico 1, Orion, and Mars are shown in Table 1.

Results from the Cooperative Regional Rice Quality Laboratory at Beaumont, TX, indicate that Bengal has typical U.S. medium-grain rice cooking characteristics as described by Webb et al. (3). Bengal has an average apparent starch amylose content of 137 g kg\(^{-1}\) and a low gelatinization temperature (65-68 °C), as indicated by an average alkali spreading reaction of 6 in 1.7% KOH. The endosperm of Bengal is nonglutinous, nonaromatic, and has a light brown pericarp.

Bengal is susceptible to the blast fungus (Pyricularia grisea) races IB-1 and IB-49 and resistant to moderately resistant to races IG-1, IH-1, IB-54, IC-17, and ID-13. Bengal is moderately susceptible to sheath blight (Rhizoc-

CROP REGISTRATIONS 645

Published May, 1993