of wheat streak mosaic virus. NE84557 has a good yield record for a high quality, conventional height wheat and would have been a candidate for cultivar release had it not been very susceptible to wheat streak mosaic virus.

Seeds of these lines are available from the corresponding author. It is requested that appropriate recognition of source be given when this germplasm contributes to research or development of new cultivars.


References and Notes


Registration of Three Pairs of Awned vs. Awnletted Near-Isolines of Hard Red Winter Wheat

THREE PAIRS of hard red winter wheat (Triticum aestivum L.) germplasms were developed and released in 1992 by the Oklahoma Agric. Exp. Stn. Each pair is near-isogenic except for alleles conferring awned vs. awnletted spikes. With these near-isolate pairs, researchers may more precisely determine the contribution of awns to kernel development and water-use efficiency in a wheat gene pool where the awned genotype has traditionally prevailed. The paucity of awnless or awnletted hard red winter (HRW) wheat cultivars, and the rising interest among Great Plains wheat producers in awnletted wheat as a more palatable source of forage, have created a demand for this type of germplasm. OK92G201 (Reg. no. GP-345, PI 561728), OK92G203 (Reg. no. GP-346, PI 561730), and OK92G205 (Reg. no. GP-347, PI 561732) should satisfy some demand because they represent awnletted near-isolines of three awned HRW wheat cultivars currently in production. These are ‘TAM 107’ (5), ‘Mustang’ (developed and released by AgriPro Biosciences, Inc., formerly Nickerson American Plant Breeders, Inc., Berthoud, CO), and ‘Century’ (6). The homozygous awned genotype was also selected from the BC4F1 family. Depending on the recurrent parent, five to seven BC4F1 awnletted plants were allowed to set seed in the greenhouse to produce BC4F2 seed. These plants were planted in the greenhouse, keeping a record of BC4F2 plants de-