is capable of seed production, but all commercial propagation will be vegetative. For establishment, both containerized and bare-root clonal ramets can be used; however, containerized plants establish better in tidal areas.

Tidal plantings of Bayshore smooth cordgrass should be established below plantings of 'Avalon' saltmeadow cordgrass [S. patens (Ait.) Muhl.] Bayshore has been successfully established on tidal areas in series of rows spaced 46 cm apart, with 46-cm plant spacing within the row on the beach below the mean high water elevation. Several rows of Avalon saltmeadow cordgrass should be established at the same spacing adjacent to and above the smooth cordgrass. Bayshore smooth cordgrass plants must be either grown in a saline environment or acclimated to salt before planting on a tidal area.

Field tests show Bayshore to be well adapted on tidal stream banks from New York to North Carolina. Breeder culms of Bayshore will be maintained and distributed by USDA-SCS at the Cape May Plant Materials Center, Cape May Court House, New Jersey 08210.

D. W. Hamer,* C. F. Miller, and R. W. Duell (1)

References and Notes
1. D.W. Hamer, USDA-SCS, Cape May Plant Materials Center, 1536 Route 9 N., Cape May Court House, NJ 08210; C.F. Miller, USDA-SCS, 1370 Hamilton St., Somers Point, NJ 08203; and R.W. Duell, Plant Sci. Dep., New Jersey Agric. Exp. Stn., Cook College, Rutgers Univ., New Brunswick, NJ 08903. This work was supported by the USDA-SCS, the New Jersey Agric. Exp. Stn., and the Virginia Dep. of Conserv. and Recreation. Registration by CSSA. Accepted 31 May 1993. *Corresponding author.

Published in Crop Sci. 34:300–301 (1994).

Registration of ‘Brim’ Soybean

‘Brim’ soybean [Glycine max (L.) Merr.] (Reg. no. CV-309, PI 548986) was developed by the USDA-ARS, in cooperation with the North Carolina Agricultural Research Service and the Arkansas Agricultural Experiment Station. It was released in 1990 to provide a cultivar of Maturity Group VI with high productivity and resistance to soybean mosaic virus.

Brim is the bulked increase of an F1 line from the cross ‘Young’/N73-1102 (1). The parents of N73-1102, were the cultivars Tracy (2) and Ransom (3). Young and N73-1102 were mated in 1978 at Clayton, NC, and the F1 was grown in the USDA Soybean Winter Nursery at Isabilla, PR, the following winter. The F1 progeny were inbred to the F2 generation using single-seed descent. Initial yield testing of the line occurred in North Carolina in 1982 and 1983. Prior to release, the breeding line was designated N82-1198. Brim was tested in the Uniform Preliminary VI Nursery in 1984 at eight environments. It was subsequently tested in the Uniform Group VI Nursery at about 29 locations each year from 1985 to 1987.

Brim matures 3 d earlier than ‘Leflore’ and has produced 7.2% higher seed yield than Leflore. The average seed protein and oil concentrations for Brim are 423 and 197 g kg-1 seed, respectively. Agassiz is classified as a late Group 00 maturity (relative maturity 00.9), averaging ~6 d later than ‘McCall’ and ~1 d earlier than Clay (3). It is best adapted as a full-season cultivar to latitudes 46° to 48° N. Agassiz has indeterminate growth habit, purple flowers, gray pubescence, and brown pods at maturity. Seeds are yellow, with buff hilum and intermediate seed coat luster. In comparison with Clay, Agassiz exhibited a yield advantage of ~2% in Uniform Soybean Tests and ~10% in Minnesota Tests (5). Lodging scores of Agassiz and Clay are similar. Agassiz is ~3 cm taller than Clay. Seeds of Agassiz are 14% higher in protein, ~3 g kg-1 lower in oil than seeds of Clay. Agassiz is slightly poorer in seed quality than Clay, 2.3 vs. 2.0 on a scale of 1 = very good to 5 = very poor. The iron deficiency chlorosis scores of Agassiz and Clay are similar, both being intermediate. Agassiz has the Rps1 gene for resistance to phytophthora root rot. Agassiz is susceptible to powdery mildew (caused by Microsphaera diffusa Cooke & Peck).

Registration of ‘Agassiz’ Soybean

Agassiz’ soybean [Glycine max (L.) Merr.] (Reg. no. CV-310, PI 562372) was developed by the Minnesota Agricultural Experiment Station. It was released in February 1992 because of its high yield and resistance to phytophthora root rot (caused by Phytophthora sojae Kauf. & Gerd.), compared with other public cultivars of similar maturity.

Agassiz was derived from an F2 plant selected from the cross ‘Simpson’/M71-140 (4). M71-140 is a selection from the cross ‘Clay’/‘Evans’ (1,2). The population was advanced by the single-pod bulk method to the F2 generation in Chile and Minnesota. Agassiz was tested for yield in Minnesota from 1985 through 1991 under the designation M84-456. It was evaluated in the Uniform Soybean Tests, Northern States, Test 00, from 1989 through 1991 (5).

Agassiz is classified as a late Group 00 maturity (relative maturity 00.9), averaging ~6 d later than ‘McCall’ and ~1 d earlier than Clay (3). It is best adapted as a full-season cultivar to latitudes 46° to 48° N. Agassiz has indeterminate growth habit, purple flowers, gray pubescence, and brown pods at maturity. Seeds are yellow, with buff hilum and intermediate seed coat luster. In comparison with Clay, Agassiz exhibited a yield advantage of ~2% in Uniform Soybean Tests and ~10% in Minnesota Tests (5). Lodging scores of Agassiz and Clay are similar. Agassiz is ~3 cm taller than Clay. Seeds of Agassiz are 14% higher in protein, ~3 g kg-1 lower in oil than seeds of Clay. Agassiz is slightly poorer in seed quality than Clay, 2.3 vs. 2.0 on a scale of 1 = very good to 5 = very poor. The iron deficiency chlorosis scores of Agassiz and Clay are similar, both being intermediate. Agassiz has the Rps1 gene for resistance to phytophthora root rot. Agassiz is susceptible to powdery mildew (caused by Microsphaera diffusa Cooke & Peck).

Published in Crop Sci. 34:300–301 (1994).

References and Notes