Registration of ‘Lambert’ Soybean

‘Lambert’ soybean [Glycine max (L.) Merr.] (Reg. no. CV-311, PI 562373) was developed by the Minnesota Agricultural Experiment Station. It was released in February of 1992 because of its superiority in yield compared with other public cultivars of similar maturity.

Lambert was derived from an F₄ plant selected from the cross M75-274/M76-151. M75-274 has the pedigree ‘Evans’/L70T-543G (3); L70T-543G is a selection from the cross L15/‘Amsoy 71’ (7); L15 is from the cross ‘Wayne’*6/‘Clark 63’ (1,9); M76-151 has the pedigree M70-271/‘Hodgson 78’ (5); M70-271 is a selection from the cross ‘Merit’/M64-3 (2); and M64-3 has the pedigree ‘Traverse’/PI 196163 (“Tokatinagaha”) (4). The population was advanced by the single-pod bulk method to the F₄ generation in Chile and Minnesota. Lambert was tested for yield in Minnesota from 1985 through 1991 under the designation M84-748. It was evaluated in the Uniform Soybean Tests, Northern States Test 0, from 1989 through 1991 (8).

Lambert is classified as Group 0 maturity (relative maturity 0.7), averaging ≈ 1 d later than ‘Glenwood’ (6). It is best adapted as a full-season cultivar to latitudes 45° to 47° N. Lambert has indeterminate growth habit, purple flowers, gray pubescence, and brown pods at maturity. Seeds are yellow, with buff hila and shiny seed coat luster. In comparison with Glenwood, Lambert exhibited a yield advantage of ≈15% in Uniform Soybean Tests and the same lodging score (8). In Minnesota tests Lambert has ≈16% yield advantage over Glenwood. Lambert is ≈5 cm taller than Glenwood. Seeds of Lambert are 6 mg smaller, ≈5 g kg⁻¹ lower in oil concentration, and similar in protein concentration compared to Glenwood. Lambert has slightly better seed quality than Glenwood, 2.1 vs. 2.3 on a scale of 1 = very good to 5 = very poor. The iron deficiency chlorosis scores of Lambert and Glenwood are similar, both being intermediate. Lambert has the Rps1 gene for resistance to phytophthora root rot (caused by Phytophthora sojae Kauf. & Gerd.). Lambert is resistant to powdery mildew (caused by Microsphaera diffusa Cooke & Peck).

Lambert was named after the late Dr. J.W. Lambert, a pioneer soybean breeder at the University of Minnesota who was instrumental in developing highly productive early-maturing cultivars for Minnesota and other areas with similar latitudes.

Registration of ‘Parker’ Soybean

‘Parker’ soybean [Glycine max (L.) Merr.] (Reg. no. CV-312, PI 562374) was developed by the Minnesota Agricultural Experiment Station. It was released in February 1992 because of its superior yield potential compared with other public cultivars of similar maturity.

Parker was derived from an F₄ plant selected from the cross A79-136012/’Dawson’ (5). A79-136012 is a selection from the cross Pride ‘B216’/Land O’Lakes ‘4102’. Pride ‘B216’ has a pedigree ‘Corsoy’/’Wayne’ (7,1); Land O’Lakes ‘4102’ has the pedigree ‘Mack’/3/’Wayne’/’Clark’/’A79’/’A79’ (2,1,4,8,6). The population was advanced by the single-pod bulk method to the F₄ generation in Chile and Minnesota.

Parker was tested for yield in Minnesota from 1985 through 1991 under the designation M84-916. It was evaluated in the Uniform Soybean Tests, Northern States, Preliminary Test I, from 1989 through 1991 (8).

Parker was released on 15 Feb. 1992 to approved seed growers. Parker is classified as Group I maturity (relative maturity 0.7), averaging ≈ 1 d earlier than ‘Hardin’ (6). Parker has an indeterminate growth habit, white flowers, gray pubescence, and brown pods at maturity. Seeds are yellow, with buff hila and a dull seed coat luster. In comparison with Hardin, Parker exhibited a yield advantage of ≈7% in Uniform Soybean Tests and ≈9% in Minnesota tests (8). Parker is ≈3 cm taller than Hardin and is similar to Hardin in lodging score. Seeds of Parker are lower in oil concentration than seeds of Hardin. Parker has an intermediate iron deficiency chlorosis score. Seeds of Parker are lower in protein, and ≈6 g kg⁻¹ higher in oil concentration than seeds of Hardin. Parker has an intermediate iron deficiency chlorosis score. Seeds of Parker are higher in oil concentration than seeds of Hardin. Parker has an intermediate iron deficiency chlorosis score. Seeds of Parker are lower in protein, and ≈6 g kg⁻¹ higher in oil concentration than seeds of Hardin. Parker has an intermediate iron deficiency chlorosis score. Seeds of Parker are lower in protein, and ≈6 g kg⁻¹ higher in oil concentration than seeds of Hardin. Parker has an intermediate iron deficiency chlorosis score. Seeds of Parker are lower in protein, and ≈6 g kg⁻¹ higher in oil concentration than seeds of Hardin. Parker has an intermediate iron deficiency chlorosis score. Seeds of Parker are lower in protein, and ≈6 g kg⁻¹ higher in oil concentration than seeds of Hardin. Parker has an intermediate iron deficiency chlorosis score.