of Ciaric for research purposes can be obtained from the corresponding authors for at least five years.

N. CASTILLO T.* AND L. MONTOYA C. (7)

References and Notes

Registration of ‘Dimon’ Soybean

‘Dimon’ soybean [Glycine max (L.) Merr.] (Reg. no. CV-315, PI 572244) was developed by the Michigan Agricultural Experiment Station. It was released in 1991 on the basis of its performance in yield trials in Michigan. Dimon has exhibited excellent yield potential for its maturity, as well as improved lodging resistance and oil content compared with cultivars commonly grown in Michigan. Dimon was named for Mr. Dimon Wolfe, technician for the Michigan State University’s soybean breeding project from its inception until his retirement after 35 years of service.

Dimon was developed by pedigree selection from a cross ‘Elgin’/HW8039 made in 1982. HW8039 was developed by the Ohio Agricultural Research and Development Center from ‘Weber’/Pella. A cross between a small-seeded cultivar of Maturity Group II and a large-seeded cultivar of Maturity Group III. Dimon was selected as an F2-derived family in the F2 generation and was tested under the experimental designaton E86339. F2-derived families were extracted from E86339 and evaluated for plant type, height, maturity, lodging, seed size, and flower, pod, pubescence, and hilum color in the F2 generation. F2-derived families with similar phenotypes were composited further in the F3 generation for production of breeder seed.

Dimon has indeterminate growth habit, purple flowers, tawny pubescence, tan pods, and shiny seeds with black hilum. It is of Group II maturity, similar to ‘Corsoy 79’ (1) and Elgin. In 32 performance trials in Michigan, seed yield of Dimon averaged 0.30 Mg ha\(^{-1}\) (P < 0.01) above the mean of all entries, 1% (NS) less than Elgin, and 12% (P < 0.01) more than Corsoy 79. Its average lodging score was significantly less than that of Corsoy 79. Dimon is below average height, being significantly shorter than Corsoy 79. Seed protein concentration of Dimon is similar to other cultivars grown in Michigan. In 20 trials in Michigan, Dimon averaged 392 g kg\(^{-1}\) protein, 8 g kg\(^{-1}\) higher than Elgin (P < 0.01) and 11 g kg\(^{-1}\) less than Corsoy 79 (P < 0.01). Dimon has above average seed oil concentration, averaging 208 g kg\(^{-1}\), 1 g kg\(^{-1}\) higher than Elgin (P < 0.01) and 6 g kg\(^{-1}\) higher than Corsoy 79 (P < 0.01). Dimon is susceptible to Phytophthora root rot (caused by Phytophthora megasperma Deech. f sp. glycinea T. Kuan & D.C. Erwin) and to brown stem rot (caused by Phialophora gregaria (Allington and J.W. Chamberlain) W. Gams).

Breeder seed of Dimon was distributed to the Michigan Foundation Seed Association for planting in 1990. Breeder seed will be maintained by the Michigan Agricultural Experiment Station, East Lansing. Samples of seed for research purposes will be available for the next five years from the department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824.

T. G. ISLEIB,* C. H. SNELLER, AND B. W. DIERS (5)

References and Notes
5. T.G. Isleib, Dep. of Crop SCI., North Carolina State Univ., Raleigh, NC 27695-7620; C.H. Sneller, Dep. of Agronomy, Univ. of Arkansas, Fayetteville, AR 72701; and B.W. Diers, Dep. of Crop Sci., Michigan State Univ., East Lansing, MI 48824. This research was supported by grants from the Soybean Promotion Committee of Michigan and the Michigan Crop Improvement and Foundation Seed Associations. Registration by CSSA. Accepted 31 July 1993.

Registration of ‘Felix’ Soybean

‘Felix’ soybean [Glycine max (L.) Merr.] (Reg. no. CV-316, PI 572245) was developed by the Michigan Agricultural Experiment Station. It was released in 1991 on the basis of its early maturity and performance in yield trials in Michigan. Felix has exhibited excellent yield potential for its maturity as well as improved lodging resistance and protein content compared to cultivars commonly grown in Michigan. Felix was named for Mr. Felix Witt, first chairperson of the Michigan Soybean Committee and recipient of the award for distinguished service to agriculture from Michigan State University’s College of Agriculture and Natural Resources.

Felix was selected from a cross ‘ProSoy 104’/HW8028 made in 1982. ProSoy 104, a proprietary Maturity Group I cultivar, was obtained from ProSeeds of Adrian, MI; it is of undisclosed parentage. HW8028 was selected at the Ohio Agricultural Research and Development Center from a cross A75-105021/‘Century’ (7). A75-105021 is a breeding line of Maturity Group I selected at Iowa State University from the cross ‘Corsoy’*2 (6)/Mack’ (3)/L65-1342. L65-1342 was developed by USDA-ARS from the cross ‘Wayne’*2 (1)/L62-1926. L62-1926 has the pedigree ‘Clark’*6 (5)/PI 86024 and is nearly isogenic to Hardin. It exhibited excellent yield potential for its maturity, as well as improved lodging resistance and protein content compared to cultivars commonly grown in Michigan. Felix was named for Mr. Felix Witt, first chairperson of the Michigan Soybean Committee and recipient of the award for distinguished service to agriculture from Michigan State University’s College of Agriculture and Natural Resources.

Felix was selected from a cross ‘ProSoy 104’/HW8028 made in 1982. ProSoy 104, a proprietary Maturity Group I cultivar, was obtained from ProSeeds of Adrian, MI; it is of undisclosed parentage. HW8028 was selected at the Ohio Agricultural Research and Development Center from a cross A75-105021/‘Century’ (7). A75-105021 is a breeding line of Maturity Group I selected at Iowa State University from the cross ‘Corsoy’*2 (6)/Mack’ (3)/L65-1342. L65-1342 was developed by USDA-ARS from the cross ‘Wayne’*2 (1)/L62-1926. L62-1926 has the pedigree ‘Clark’*6 (5)/PI 86024 and is nearly isogenic to Clark, but carries the e2 gene for early maturity (R.L. Bernard, personal communication). Felix was developed by pedigree selection as an F2-derived family in the F2 generation and was tested under the experimental designaton E86627. F2-derived families were extracted from E86627 and evaluated for plant type, height, maturity, lodging, seed size, and flower, pod, pubescence, and hilum color in the F2 generation. F2-derived families with similar phenotypes were composited further in the F3 generation for production of breeder seed.

Felix has indeterminate growth habit, white flowers, gray pubescence, tan pods, and dull seeds with yellow hilum. It is of late Group I maturity similar to ‘Hardin’. In 32 performance trials in Michigan, seed yield of Felix averaged 0.14 Mg ha\(^{-1}\) (P < 0.01) above the mean of all entries while maturing 3 to 4 d earlier than ‘Corsoy 79’. Average yield of Felix was 6% (P < 0.05) greater than Corsoy 79 and 3% (NS) greater than Hardin. It exhibited excellent resistance to lodging in spite of being above average height. Seed protein concentration of Fe-