REGISTRATION OF CULTIVARS

Registration of 'ICPL 151' Pigeonpea

'ICPL 151' pigeonpea [Cajanus cajan (L.) Millsp.] (Reg. no. CV-111, PI 564587) was developed by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India. It was tested extensively by the All India Coordinated Pulses Improvement Project (AICPIP) and released for general cultivation as 'Jagriti' by the Indian Central Sub-Committee on Crop Standards Notification and Releases of Varieties in 1989. In 1991, ICPL 151 was also released for cultivation in Myanmar. ICPL 151 was developed through pedigree selection from the cross ICPX 74092 (ICP 6997/Prabhat) made in 1974 at ICRISAT Center. The F1 and F2 generations were grown at ICRISAT Center in 1975. Unselected early-maturing F3 segregants were bulked for sowing in the 1976 rainy season at ICRISAT's Cooperative Research Station at Hisar, Haryana, India, for pedigree selection. In 1978, F3 single-plant progeny were bulked as selection number ICPX 74092-NDTB-16-1-HIDT3-B®-B®.

In 1981, ICPL 151 was included in AICPIP trials. Over 5 yr of testing in these trials, ICPL 151 had 10% greater yields than the control cultivar UPAS 120 in the North West Hills Zone and 54% greater yields in the Central Zone of India. In four large demonstration plots at Hisar and Gwalior, ICPL 151 yielded between 2 and 4 t ha^-1. In pigeonpea–wheat crop rotation on-farm trials conducted from 1982 to 1986 in Gwalior district of central India, ICPL 151 (1.5 t ha^-1) had 12% greater yields than the control UPAS 120.

Plants of ICPL 151 are semispreading, with a determinate growth habit, and about 1 to 1.5 m in height. The recommended plant population is 330,000 plants ha^-1, which requires a seeding rate of 36 kg ha^-1. ICPL 151 is suitable for sole-cropping production systems. In India, ICPL 151 matures an average of 127 d after sowing in the Central Zone and 147 d in the North Zone and therefore can be grown successfully in rotation with winter crops such as wheat.

Plants of ICPL 151 have green stems, narrow and dark green leaves, and yellow flowers with red streaks on the back of the standard petal. Pods are borne in large loose clusters at the top of stem branches and are green with dark purple streaks. Seeds are large, round, cream-colored with a brown eye, and have an average 100-seed weight of 10.8 g. ICPL 151 has field resistance to sterility mosaic disease, but is susceptible to Phytophthora drechsleri Tucker f. sp. cajani. It is also susceptible to wilt disease (caused by Fusarium oxysporum Schlechtend.:Fr. f. sp. udum) disease, but in most cases escapes the disease due to its early maturity. ICPL 151 is susceptible to attacks by pod borers [e.g., Helicoverpa armigera (Hübner) and Maruca testulalis (Geyer)], but the short stature and determinate growth habit may be advantageous under irrigation and narrow-row culture.

Registration of 'Colfax' Soybean

'Colfax' soybean [Glycine max (L.) Merr. PI 573008] was developed by the Nebraska Agricultural Experiment Station. It was released in 1993 because of yield and other agronomic traits to public availability.


Plants of ICPL 151 have green stems, narrow and dark green leaves, and yellow flowers with red streaks on the back of the standard petal. Pods are borne in large loose clusters at the top of stem branches and are green with dark purple streaks. Seeds are large, round, cream-colored with a brown eye, and have an average 100-seed weight of 10.8 g. ICPL 151 has field resistance to sterility mosaic disease, but is susceptible to Phytophthora drechsleri Tucker f. sp. cajani. It is also susceptible to wilt disease (caused by Fusarium oxysporum Schlechtend.:Fr. f. sp. udum) disease, but in most cases escapes the disease due to its early maturity. ICPL 151 is susceptible to attacks by pod borers [e.g., Helicoverpa armigera (Hübner) and Maruca testulalis (Geyer)], but the short stature and determinate growth habit may be advantageous under irrigation and narrow-row culture.

Colfax is a late Maturity Group II cultivar with gray pubescence, tan pods, and a determinate growth habit. Seeds are yellow, with intermediate luster and buff hilum. Colfax matures 3 d later than 'Kenwood' (2), and is best adapted as a full-season cultivar from approximately mid-July to mid-October. Compared with Kenwood in the Uniform Soybean Tests Northern States, Colfax has better lodging resistance, similar seed size, 1.5 percentage points higher seed protein content, and similar oil content. Colfax has very good lodging resistance as measured by hypocotyl elongation at 28 °C at 28 days after sowing in Nebraska from 1989 through 1992, and also served as a backcross parent in Nebraska Cooperative Research Station for yield in Nebraska from 1989 through 1992.

Colfax is heterogeneous for resistance to races 1, 4, and 7 of Phytophthora sojae (Sacc. var. sojae) [caused by Phytophthora cactorum (Cooke & Ellis) Sacc. var. sojae] and is susceptible to pod and stem blight [caused by Phialophora gregata (Allington & D.W. Chamberlain) W. Gams].

Breeder seed of Colfax was distributed to the Foundation Seed Division for planting in Nebraska. Breeder seed of Colfax was distributed to the Nebraska Agricultural Experiment Station for yield in Nebraska from 1989 through 1992, and also served as a backcross parent in Nebraska Cooperative Research Station for yield in Nebraska from 1989 through 1992.

Breeder seed of Colfax was distributed to the Nebraska Agricultural Experiment Station for yield in Nebraska from 1989 through 1992, and also served as a backcross parent in Nebraska Cooperative Research Station for yield in Nebraska from 1989 through 1992.

References and Notes

G. L. Graef,* J. E. Specht, L. L. Korte, and D. M. White (4)