able attributes did not result in the development of large-seeded and/or early maturing lines. The latter type could be developed through the second cycle of crosses.

These newly developed ascocytta blight-resistant, early maturing, and large-seeded kabuli chickpea germplasms will be of immense value to both chickpea scientists and growers. Small quantities of seed of these lines can be obtained from the Legume Program, ICARDA, Syria.

K. B. SINGH* AND M. V. REDDY (3)

References and Notes
3. Legume Program, International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5466, Aleppo, Syria; and Legumes Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502 324, India. A joint contribution from ICARDA and ICRISAT. Registration by CSSA. Accepted 31 Mar. 1994. *Corresponding author.

Published in Crop Sci. 34:1416-1417 (1994).

Registration of C-22, C-23, and C-24 Germplasms of Cicer Milkvetch

Three germplasms of cicer milkvetch (Astragalus cicer L.) were released by the USDA-ARS and the Colorado Agricultural Experiment Station in December 1993. They were selected for improved extended plant height (length of longest stem) and herbage yield and for improved or reduced plant spread. The C-22 (Reg. no. GP-125, PI 578122), C-23 (Reg. no. GP-126, PI 578123), and C-24 (Reg. no. GP-127, PI 578124) germplasms trace to a 304-plant population from ‘Monarch’ that was used to develop ‘Windsor’ (2).

The population had undergone two cycles of recurrent selection for extended plant height and herbage yield when grown under irrigation in spaced-plant, replicated nurseries at Fort Collins, CO. In each of the two cycles of selection, plants were evaluated for extended height and herbage yield in each of three harvests per year for 5 yr. Spread, an average of the north-south and east-west measurements of plant width, was taken in late September of each year. Emphasis was placed on selecting plants that did not express the photoperiod-induced dormancy trait following the second harvest in late July or early August (1). The selected clones for each germplasm were grown under isolation for the production of polycross seed. The germplasms did not have clones in common. Bumblebees (Bombus spp.) were the principal pollinators.

Germplasm C-22 consists of 35 parental clones selected for improved extended plant height and herbage yield. Mean extended height of the parental clones was 126, 121, and 144% of the parental clone within a germplasm. Germplasm C-23 consists of 21 clones selected for improved extended height and herbage yield. Mean extended height of the parental clones was 118, 120, and 140% of that of Monarch. Germplasm C-24 consists of 11 clones selected for improved extended height and reduced spread. Mean extended height of the parental clones was 129, 134, and 153% of that of Monarch. Seed weight of the parental clones ranged from 3.48 to 4.71 g 1000 seed-1 with a mean of 4.15 g. Seed weight of the parental clones ranged from 3.54 to 4.67 g 1000 seed-1 with a mean of 4.16 g. Seed weight of the parental clones ranged from 3.48 to 4.71 g 1000 seed-1 with a mean of 4.15 g.

An equal amount of polycross seed (by weight) from each parental clone within a germplasm was conserved. Quantities of seed (up to 25 g) will be provided upon written request to the author. It is asked that recognition of germplasm source be made when these germplasms contribute to the development of an improved line or when used for research purposes.

C. E. TOWNSEND* (3)

References and Notes

Published in Crop Sci. 34:1416-1417 (1994).

Registration of Oh603 Germplasm of Maize

Inbred Oh603 (Reg. no. GP-295, PI 573098) is a flint maize (Zea mays L.) line developed by the Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH. The line was released 6 Apr. 1989 and provides potential value as a source of germplasm in the development of proprietary inbreds by the hybrid seed industry, particularly for specialty hybrids suitable for dry milling.

Oh603 was developed from the fourth random selection of the Ohio Synthetic Corn Belt-Tropical population (OhSCB-TF(C0)). In 1981, full-sib pollinations were collected on the basis of flintiness and large kernel size, and inbreeding of the full-sib progenies was initiated in 1982 and advanced to the S1 by E.J. Dollinger. In 1984, the pedigree method was continued, and at the S3 breeding line was designated E1-1-1-2. The S3 line tested in B73 during 1988 to 1990, and in testcrosses with B73 during 1989 and 1991. Average yield of S3 was 17% higher than B73 x Mo 17 and 5 % higher than the average of two commercial hybrids. Pioneer brand 3343, Pioneer brand 3352, and DeKalb 601-4. Incidence of stalk lodging was 4 lower than B73 x Mo 17 and 0.1 g kg-1 lower than the average of the commercial checks. Grain moisture of Oh603 x B73 was 1.7 g kg-1 lower than B73 x Mo 17.