Registration of ‘Othello’ Pinto Bean

‘Othello’ pinto bean (Phaseolus vulgaris L.) (Reg. no. CV-121, PI 578268) was developed by the USDA-ARS in cooperation with Washington State University and jointly released in September 1986 by the USDA-ARS, Washington State University, the University of Idaho, and Oregon State University.

Othello is an F_7 selection from the parentage ‘NW-410’ Pinto/2/‘Victor Pink’ Aurora (NW-410 = ‘Pinto UI-114’/Sutter Pink’; Victor = ‘Red Mexican UI-35’/1/PI 203958/2/UI-35/3/Sutter Pink/4/Aurora).

Othello, under the designation GH-215, was tested extensively in the Pacific Northwest and, from 1984 to 1986, in the interregional Cooperative Dry Bean Nursery at many locations in the USA and Canada (3,4). Othello has equalled or exceeded the best other pinto cultivars in seed yield, size (2.3 to 2.8 seeds g^{-1}), and quality. Its cooking and food quality characteristics are similar to those of other popular pinto cultivars (2).

Othello has a unique combination of very early maturity (70 to 92 d) and effective field resistance to fusarium root rot [caused by Fusarium solani (Mart.) Sacc. f. sp. phaseoli (Burkholder) W.C. Snyder & H.N. Hans.] and, like other pink cultivars, it is comparatively drought tolerant. Harold has vigorous, short vines that mature ~90 d after planting. It has small leaves and the plants are more concentrated and upright than those of other pink cultivars. Harold provides an increased seed size larger than those of widely grown ‘Viva’ (3.4 to 3.6 seeds g^{-1}). Seed of Harold are similar in size (3.0 to 3.2 seeds g^{-1}) and color to those of ‘Sutter Pink’, a favored cultivar except for its susceptibility to all strains of BCMV. Food quality of Harold was found similar to that of other pink cultivars (2).

Breeder and foundation seed of Harold are maintained by the Washington State Crop Improvement Assoc., Inc., 114 N. 5th Ave., Yakima, WA 98902-2642, and by the Idaho Crop Improvement Assoc., Inc., 1641 S. Curtis Rd., Boise, ID 83705.

D. W. Burke, M. J. Silbernagel,* J. M. Kraft, and H. H. Koehler (6)

References and Notes