Nebraska Crop Improvement Association who are classified as Class I growers for production of certified seed. Allocation to growers was based on an annual review of their written proposals for production and marketing certified seed of Saturn. There will be no registered seed class of Saturn. The Nebraska Agricultural Experiment Station will maintain breeder seed. Small quantities of seed for research purposes may be obtained from the corresponding author for at least 5 yr after the release of Saturn.

G. L. Graef,* J. E. Specht, Zhiqiang Sun, L. L. Korte, and D. M. White (4)

References and Notes

Registration of '315' Buffalograss

'315' buffalograss [Buchloé dactyloides (Nutt.) Engelm.] (Reg. no. CV-174, PI 583836), experimental designation NE 84-315, was released by the Institute of Agriculture and Natural Resources at the University of Nebraska-Lincoln in June 1993. Cultivar 315, a female clone, was selected from progeny of a buffalograss germplasm collection made by the USDA-SCS and evaluated at the Texas A&M University Research and Extension Center, Dallas. The maternal parent (TAES 1303) of plant TAES 1303.1 was found in a native stand at Fort Collins, CO, in 1980. TAES 1303 was included in an open-pollinated nursery with 149 other native accessions from which seed was harvested, germinated, and field planted. A single female plant, TAES 1303.1, was selected from this progeny population. After several years, a single plant with superior qualities found growing in the vicinity of TAES 1301.1 was selected and named 315. This selection, along with several thousand others, was evaluated at the John Seaton Anderson Turfgrass Research Facility located near Mead, NE. Cultivar 315 was propagated vegetatively by stolons and plugs to provide genetically uniform planting stock for evaluating performance and for making comparisons to commercially available cultivars and experiments. The first breeder block of 315 was planted in 1989. Pollinated nursery with 149 other native accessions from which TABS 1303 was included in an open-pollinated nursery at the Bluecreek Experimental Farm, Bluecreek, UT. The resulting agronomically desirable F1-derived lines, resistant to moisture areas infested with dwarf smut (caused by Tilletia controversa Kiihn in Rabenh.). Promontory was derived from 'Manning'/'Bezostaya-r. The F2 through Fs generations were screened for common bunt [caused by Tilletia caries (DC.) Tul. & C. Tul.] resistance. Two individual heads from Promontory, tested under the designation UT1567-51, were used to establish the female plant, TABS 1303.1, was selected from this progeny population. After several years, a single plant with superior qualities found growing in the vicinity ofTAB 1301.1 was selected and named 315. This selection, along with several thousand others, was evaluated at the John Seaton Anderson Turfgrass Research Facility located near Mead, NE, and at the Crenshaw and Doguet Turfgrass sod farms at Bastrop, TX. Foundation and certified sod, plugs, and stolons of 315 are available from TABS, 609 Castle Dr., Bastrop, TX 78604, and Doguet Turfgrass, Inc., 609 Castle Dr., Bastrop, TX 78604. A plant patent has been applied for.

T. P. Riordan,* J. Johnson-Cicalese, M. C. Engelke, R. E. Gauch, and R. C. Shearman (4)

References and Notes

Registration of 'Promontory' Wheat

'Promontory' (Triticum aestivum L.) (Reg. no. CV-555458) is a hard red winter wheat developed by the Utah Agricultural Experiment Station. Promontory was released to provide superior yield and test weight in low moisture areas. Compared with other commercially available buffalograsses, 315 will green-up earlier in the spring, but go dormant earlier in the fall. This earlier fall dormancy partially explains the winter hardiness of 315, making it the first vegetative turf-type buffalograss developed specifically for adaptation to the northern parts of the USA. Cultivar 315 establishes at a slower rate than the more aggressive, southern-adapted buffalograsses. This slower establishment rate is not considered a serious problem, since planting density can be increased to compensate for slower establishment. In 1993, 315 had the highest average turfgrass quality of 20 entries at 19 locations in the buffalograss trial sponsored by the National Turfgrass Evaluation Program.

T. P. Riordan,* J. Johnson-Cicalese, M. C. Engelke, R. E. Gauch, and R. C. Shearman (4)

Published in Crop Sci. 35:1205-1206 (1995).