CROP REGISTRATIONS

tant to dwarf smut, were evaluated for yield, continued resistance to dwarf smut, and other agronomic traits in a preliminary unreplicated nursery at Blue Creek and in the dwarf smut nursery at Logan in 1985. Samples from the preliminary nursery and all subsequent nurseries were sent to Pillsbury Mills in Ogden, UT, for milling and baking analysis. Selection continued in replicated yield trials throughout the state. UT1567-51 was evaluated in the state county yield evaluation nurseries from 1986 to 1989. It was evaluated in the Western Hard Red Regional Winter Wheat Nursery in 1987 through 1989. In 1988, 100 heads were selected from F₅:₁₀ plants and grown as head rows. After roguing off-type and nonuniform rows, the remaining 82 F₁₀-derived lines were harvested and bulked as breeder seed.

Promontory is an awned, bronze-chaffed, medium-height wheat. The coleoptile is white, and juvenile growth is semi-erect. Promontory is ≈1 cm shorter and ≈3 d earlier than Manning, and with darker bronze chaff color at maturity. Internodes of Promontory are hollow and the flag leaf is erect. At the boot growth stage, plants are blue green. The head is more lax than Manning, with glumes of medium length and width. The seed is ovate, with medium length brush and a medium wide and medium deep seed crease. Milling and breadmaking characteristics of Promontory are acceptable and are similar to Manning, although Promontory has a slightly weaker dough. Promontory is highly resistant to dwarf smut, and its resistance is derived from PI 178383 and 'Ridif', two parents of Manning (1). It generally produces 60 to 120 kg ha⁻¹ higher yields than Manning in Utah, and is 12 to 25 kg m⁻³ heavier in volume weight than Manning.

Promontory has not been protected under the U.S. Plant Variety Protection Act. Breeder seed of Promontory will be maintained by the Utah Agricultural Experiment Station, Logan, UT 84322-4820.

D. J. Hole,* W. Dewey, and R. S. Albrechtsen (2)

References and Notes

Published in Crop Sci. 35:1206-1207 (1995).

Registration of 'MD 40' Tobacco

'MD 40', a Maryland tobacco (Nicotiana tabacum L.) cultivar resistant to black shank. This is the first cultivar of Maryland tobacco with resistance to these three diseases.

MD 40 was evaluated in replicated plots at the Marlboro Facility, Central Maryland Research and Education Center, and two farms in southern Maryland in 1990 (1). The yield and dollar value per hectare was similar to other released Maryland cultivars, but had a significantly better quality index than 'MD 102', which matured 3 d earlier than MD 201, and was similar to MD 609. Leaves of MD 40 were larger with medium width and pointed tips. MD 40 was taller (91.7 cm) than other cultivars and has fewer internodes per plant (21.7) than MD 201 (23.4) and MD 341 (24.3). It flowered 70 d after transplanting, which was similar to MD 609 and MD 201 but 3 d later than MD 102. Total alkaloid level for MD 40 was 2.67%, which was similar to MD 609 (2.53%) but significantly higher than other Maryland cultivars. MD 40 is suitable for production throughout the Maryland tobacco growing area, particularly in fields where black shank and TMV are persistent problems. Addition of performance and management has been

Breeder seed of MD 40 will be maintained by the Maryland Agricultural Experiment Station.

M. K. Aycock, Jr.,* and C. G. McKee (6)

References and Notes
6. Dep. of Agronomy, Univ. of Maryland, College Park, MD. Article no. A6586 and Contribution no. 8798 of the Maryland Stn. Registration by CSSA. Accepted 30 Sept. 1994. *Corresponding author (Email: mckee@arch.umd.edu).

Published in Crop Sci. 35:1207 (1995).

Registration of 'Bronson' Soybean

'Bronson' soybean [Glycine max (L.) Merr.] (Reg. no. CV-110, P1583833) was developed by the USDA-ARS in cooperation with the Purdue University Agricultural Research Center, West Lafayette, IN. Bronson was released in 1992 for its resistance to the soybean cyst nematode (Heterodera glycines Ichinohe) and its excellent yield potential.

Bronson is an F₄-derived line from the cross 'Bradley' x 'Williams 82' (L80-4323). Resistance to the soybean cyst nematode (SCN) in Bronson is derived from PI 178383 and 'Ridif', two parents of Manning (1). It generally produces 60 to 120 kg ha⁻¹ higher yields than Manning in Utah, and is 12 to 25 kg m⁻³ heavier in volume weight than Manning.

Bronson is an F₄-derived line from the cross 'Bradley' x 'Williams 82' (L80-4323). Resistance to the soybean cyst nematode (SCN) in Bronson is derived from PI 178383 and 'Ridif', two parents of Manning (1). It generally produces 60 to 120 kg ha⁻¹ higher yields than Manning in Utah, and is 12 to 25 kg m⁻³ heavier in volume weight than Manning.

MD 40 was evaluated in replicated plots at the Marlboro Facility, Central Maryland Research and Education Center, and two farms in southern Maryland in 1990 (1). The yield and dollar value per hectare was similar to other released Maryland cultivars, but had a significantly better quality index than 'MD 102', which matured 3 d earlier than MD 201, and was similar to MD 609. Leaves of MD 40 were larger with medium width and pointed tips. MD 40 was taller (91.7 cm) than other cultivars and has fewer internodes per plant (21.7) than MD 201 (23.4) and MD 341 (24.3). It flowered 70 d after transplanting, which was similar to MD 609 and MD 201 but 3 d later than MD 102. Total alkaloid level for MD 40 was 2.67%, which was similar to MD 609 (2.53%) but significantly higher than other Maryland cultivars. MD 40 is suitable for production throughout the Maryland tobacco growing area, particularly in fields where black shank and TMV are persistent problems. Addition of performance and management has been

Breeder seed of MD 40 will be maintained by the Maryland Agricultural Experiment Station.

M. K. Aycock, Jr.,* and C. G. McKee (6)

References and Notes
6. Dep. of Agronomy, Univ. of Maryland, College Park, MD. Article no. A6586 and Contribution no. 8798 of the Maryland Stn. Registration by CSSA. Accepted 30 Sept. 1994. *Corresponding author (Email: mckee@arch.umd.edu).

Published in Crop Sci. 35:1207 (1995).