tant to dwarf smut, were evaluated for yield, continued resistance to dwarf smut, and other agronomic traits in a preliminary unreplicated nursery at Blue Creek and in the dwarf smut nursery at Logan in 1985. Samples from the preliminary nursery and all subsequent nurseries were sent to Pillsbury Mills in Ogden, UT, for milling and baking analysis. Selection continued in replicated yield trials throughout the state. UT1567-51 was evaluated in the state county yield evaluation nurseries from 1986 to 1989. It was evaluated in the Western Hard Red Regional Winter Wheat Nursery in 1987 through 1989. In 1988, 100 heads were selected from F2810 plants and grown as head rows. After roguing off-type and nonuniform rows, the remaining 82 F2-derived lines were harvested and bulked as breeder seed.

Promontory is an awned, bronze-chaffed, medium-height wheat. The coleoptile is white, and juvenile growth is semi-erect. Promontory is 1 cm shorter and 3 d earlier than Manning, and with darker bronze chaff color at maturity. Internodes of Promontory are hollow and the flag leaf is erect. At the boot growth stage, plants are blue green. The head is more lax than Manning, with glumes of medium length and width. The seed is ovate, with medium length brush and a medium wide and medium deep seed crease. Milling and baking characteristics of Promontory are acceptable and are similar to Manning, although Promontory has a slightly weaker dough. Promontory is highly resistant to dwarf smut, and its resistance is derived from PI 178383 and ‘Ridif’, two parents of Manning (1). It generally produces 60 to 120 kg ha~1 higher yields than Manning in Utah, and is 12 to 25 kg m~3 heavier in volume weight than Manning.

Promontory has not been protected under the U.S. Plant Variety Protection Act. Breeder seed of Promontory will be maintained by the Utah Agricultural Experiment Station, Logan, UT 84322-4820.

D. J. Hole,* W. Dewey, and R. S. Albrechtsen (2)

References and Notes


Published in Crop Sci. 35:1206-1207 (1995).

Registration of 'MD 40' Tobacco

'MD 40', a Maryland tobacco (Nicotiana tabacum L.) cultivar (Reg. no. CV-110, PI 583833) was developed by the Maryland Agricultural Experiment Station and released in 1992 for its multiple disease resistance. MD 40 was developed using the pedigree breeding method after a cross of A911*MD 609 (3) and one backcross with MD 609. A911 is a Maryland tobacco breeding line developed from the cross 'MD 872' (2)/'MD 201' (5) and contains resistance to tobacco mosaic virus (TMV) and wildfire [caused by Pseudomonas syringae pv. tabaci (Wolf & Foster) Young et al.]. MD 609 has the Florida 301 type of black shank [caused by Phytophthora nicotianae Breda de Haan var. parasitica (Dastur) G.M. Waterhouse; syn. P. parasitica Dastur var. nicotianae (Breda de Haan) Tucker] resistance. MD 40 was released in the BC1F4 generation.

MD 40 is a light air-cured (Type 32) cultivar with high resistance to TMV and wildfire, and medium-high resistance to black shank. This is the first cultivar of Maryland tobacco with resistance to these three diseases.

MD 40 was evaluated in replicated plots at the Upper Marlboro Facility, Central Maryland Research and Education Center, and two farms in southern Maryland from 1986 to 1990 (1). The yield and dollar value per hectare of MD 40 was similar to other released Maryland cultivars. MD 40 had a significantly better quality index than 'MD 10' (4) and MD 201, and was similar to MD 609. Leaves of MD 40 were longer with medium width and pointed tips. MD 40 is significantly taller (91.7 cm) than other cultivars and has fewer leaves per plant (21.7) than MD 201 (23.4) and MD 341 (23.5). MD 40 flowered 70 d after transplanting, which was similar to MD 609 and MD 201 but 3 d later than MD 10. Total alkaloid level for MD 40 was 2.67%, which was similar to MD 609 (2.53%) but significantly higher than other Maryland cultivars. MD 40 is suitable for production throughout the Maryland tobacco growing area, particularly in fields where both black shank and TMV are persistent problems. Additional information on performance and management has been published (1). Breeder seed of MD 40 will be maintained and distributed by the Maryland Agricultural Experiment Station.

M. K. Aycock, Jr.,* and C. G. McKee (6)

References and Notes


Published in Crop Sci. 35:1207 (1995).

Registration of 'Bronson' Soybean

'Bronson' soybean [Glycine max (L.) Merr.] (Reg. no. CV-330, PI 577798) was developed by the USDA-ARS in cooperation with the Purdue University Agricultural Research Programs, West Lafayette, IN. Bronson was released in 1993 because of its resistance to Races 3, 4, and 14 of the soybean cyst nematode (Heterodera glycines Ichinohe) and its excellent yield potential. Prior to release it was designated C1804.

Bronson is an F3-derived line from the cross 'Bradley' × L80-4323. Resistance to the soybean cyst nematode (SCN) in Bradley is derived from PI 88788 (2). The strain L80-4323 is a selection from the backcross 'Williams 82' × PI 88788 and, like Bradley, is resistant to SCN. The pedigree method of breeding was followed in the F3 through F5 generations in the development of Bronson. An F5-derived F6 plant row was harvested in bulk and evaluated in replicated yield tests in Indiana in 1988 and 1989. This line was evaluated for reaction to several Indiana isolates of SCN and determined to be resistant to these isolates.

The line, designated C1804, was evaluated in Uniform Test IV in 1991 and 1992 of the Uniform Soybean Tests Northern Region (5). In these tests, mean performance of Bronson was similar to that of 'Delsoy 4210' (1) for seed yield, plant height, and lodging resistance but Bronson matured 3 d earlier than

Published July, 1995