Registration of 'Rebel 3D' Tall Fescue

'Rebel 3D' tall fescue (Festuca arundinacea Schreb.) (Reg. no. CV-58, PI 567908) was developed by Lofts Seed, Inc., of Bound Brook, NJ, Pure-Seed Testing, Inc., of Hubbard, OR, and the New Jersey Agricultural Experiment Station. It was released in September 1992 by Lofts Seed. L-89 was the experimental designation of Rebel 3D.

Rebel 3D is an advanced-generation synthetic cultivar developed from the maternal progenies of 281 plants. Thirty-two propagules of each of 11 clones selected from the tall fescue germplasm source NJEDR and 32 propagules of clone 5DX-19 were interplanted with 2424 seedlings of RHL-89 in an isolated spaced-plant nursery near Hubbard, OR, in the fall of 1989. Selection prior to anthesis was directed toward phenotypic plant uniformity, disease resistance, uniform heading date, attractive dark-green color, moderately low mature plant height, and an abundance of upright reproductive tillers. Breeder seed was subsequently harvested in the summer of 1990 from the 281 plants showing the best seed set and highest resistance to stem rust (caused by Puccinia graminis Pers.: Pers.), crown rust (caused by P. coronata Corda), and net blotch (caused by Drechslera dictyoides (Drechs.) Shoemaker). The first certified seed of Rebel 3D was produced in western Oregon in 1992.

The 11 NJEDR clones provided ~30% of the parental germplasm of Rebel 3D tall fescue. Selection of these clones was based on turf performance of half-sib progeny of 19 attractive, stem rust resistant plants selected from a large spaced-plant nursery of 'Rebel Jr.' tall fescue (2). Clone 5DX-19, which contributed ~3% of the parental germplasm of Rebel 3D, was selected from 'Tomahawk' tall fescue. RHL-89, the source of ~67% of the parental germplasm of Rebel 3D tall fescue, is an 83-clone breeding composite selected from a large spaced-plant nursery at Adelphia, NJ. The plants in this nursery were developed from an extensive program directed toward the genetic improvement of tall fescue for turf use initiated by the New Jersey Agricultural Experiment Station in 1962. Plants related to 'Rebel' tall fescue (1) were mated with plants selected from old turfs of the eastern USA. Progenies from these crosses were subjected to varying numbers of cycles of population improvement including phenotypic recurrent selection in spaced-plant nurseries followed by progeny trials conducted in mowed turf.

Rebel 3D tall fescue is a medium low-growing, turf-type cultivar that displays a bright, dark-green color. It is capable of producing a persistent, attractive turf with medium-high stand density, medium-fine leaves, and improved net blotch resistance. It has medium-late reproductive maturity and is capable of producing high seed yields. Rebel 3D will produce fewer leaf clippings than many other tall fescue cultivars.

Compared with some strongly dwarf tall fescues, Rebel 3D shows improved resistance to and more rapid recovery from diseases such as brown patch (caused by Rhizoctonia solani Kühn) prevalent in the warm, humid climates of the mid-Atlantic region and upper southeastern USA. Rebel 3D performs well under irrigation in warm to hot semiarid climates typical of much of California.

Rebel 3D is recommended for use as a lawn grass in temperate and transition climates. It will perform well in full sun or in light to moderate shade.

Breeder seed of Rebel 3D tall fescue will be produced and maintained by Lofts Seed, with the cooperation of Pure-Seed Testing and the New Jersey Agricultural Experiment Station. Seed increase will be limited to two generations of increase from breeder seed: namely, foundation, and certified. Application (no. 9300200) has been made for U.S. plant variety protection.

R. H. Hurley,* V. G. Lehman, W. A. Meyer, Crystal A. Rose-Fricke, M. L. Fraser, R. F. Bara, S. Sun, and C. R. Funk (3)

References and Notes
3. R.H. Hurley, Lofts Seed, Inc., P.O. Box 146, Bound Brook, NJ 08805; V.G. Lehman, Lofts Great Western Seed Co., P.O. Box 387, Albany, OR 97321; W.A. Meyer and C.A. Rose-Fricke, Pure-Seed Testing, Inc., P.O. Box 449, Hubbard, OR 97072; M.L. Fraser, Pure-Seed Testing East, P.O. Box 176, Rolesville, NC 27571; and R.F. Bara, S. Sun, and C.R. Funk, Plant Science Dep., New Jersey Agric. Exp. Stn., Cook College, Rutgers Univ., New Brunswick, NJ 08903. Publication no. D-12155-1-94, New Jersey Agric. Exp. Stn. Some of this work was conducted as part of NIAES Project no. 12155, supported by New Jersey Agric. Exp. Stn. funds, other grants, and gifts. Additional support was obtained from the U.S. Golf Association and the Golf Course Superintendents of America Res. Fund. Registration by CSSA. Accepted 31 Oct. 1994. *Corresponding author.

Sincere appreciation is expressed to Kevin Morris, Jack Murray, Robert Shearman, and the other participants of the National Turfgrass Evaluation Program for their assistance in the testing of Rebel 3D.

Registration of 'Mouride' Cowpea

'Mouride' cowpea [Vigna unguiculata (L.) Walp.] (Reg. no. CV-125, PI 583221) was developed by the Institut Senegalais de Recherches Agricoles (ISRA) as part of a collaborative project with the University of California, Riverside, and was released by ISRA in Senegal in 1992. Mouride has resistance to several biotic stresses and is adapted for dry grain production under rainfed conditions in the Sahelian Zone of northern Senegal, where annual rainfall provides only 200 to 400 mm per growing season.

Mouride was derived from the cross 58-57/IT81D-1137, which was made in 1983. The 58-57 is a selection from a landrace that originated from Podor in the region around the Senegal river (1). The 58-57 is a widely used cultivar throughout northern Senegal and has resistance to bacterial blight [caused by Xanthomonas campestris pv. vignicola]. Breeding line IT81D-1137 was developed by the International Institute of Tropical Agriculture in Nigeria and has partial resistance to the cowpea storage weevil [Callosobruchus maculatus (F.)] and resistance to several diseases including cowpea aphid-borne mosaic virus (CabMV). The F1 seeds from individually harvested F2 plants were screened for resistance to cowpea weevil. Single plant selections for resistance to mosaic virus and bacterial blight were made with F2 families under natural field conditions in Senegal. Selection for resistance to cowpea weevil was conducted again during the F3 generation. The resistance to bacterial blight and CabMV was confirmed using artificial inoculation in the F4 and F5 generations. Beginning in the F6

Published in Crop Sci. 35:1214-1215 (1995).