iodent exhibited above average combining ability in cross hybrids (2,3). Iodent was included in the elite class of the 1935 Iowa State Corn Yield Tests, and in the last report of Iodent being available (4) there was no known seed source of the Iodent open-pollinated cultivar. Nineteen inbred lines that originated from intercrossing Iodent by M.T. Jenkins in 1922 were included in the cooperative maize breeding project of the USDA-ARS and the Iowa State University. The 19 inbreds I173(A), I197, I198, I205, I211, I222(A2), I225(A1), I124, I1238, I1242(A2), I125, I1267(A), I1267 and I267 were crossed to produce 10 single crosses that included twice (I198 × I205, and I267 × I124) and 10 single crosses were crossed in pairs to produce doubled crosses. One hundred kernels from each cross were bulked and intermated two cycles by hand pollination. The third generation of intermating was produced in a 0.4-ha field isolated by >200 m from other yellow dent maize. Approximately 1000 ears from these crosses were bulked and intermated two cycles by hand pollination. The third generation of intermating was produced in a 0.4-ha field isolated by >200 m from other yellow dent maize. Approximately 1000 ears from these crosses were used for selections and 1000 ears were harvested from the center of the isolated field planted in bulk to form BS30. BS30 has yellow dent kernels on large cobs, plant height of 2.5 to 3.5 m, tassels but with generally poor root and stalk strength. Maturity is mid-maturity with consistently good yields in north central Iowa. Iodent germplasm (119 rows) was included in the maize breeding nursery established by M.T. Jenkins in 1922. Self-pollinations were made within these 119 rows of lodent germplasm developed by the Iowa Agricultural and Home Economics Experiment Station and released on 3 Feb. 1994 as a source of lodent germplasm. BS30 (Reg. no. GP-297, PI 578282) is a maize (Zea mays L.) population of ‘lodent’ germplasm developed by the Iowa Agriculture and Home Economics Experiment Station. BS30 was first released as I173(A) in 1971, but to increase the inbreeding tolerance. The ratio of S1 bulk to F2 bulk yield increased from 53% in C0 to 63% in C2 in the case of Pop. 23 (IST) and from 59% (C0) to 66% (C2) in the case of Pop. 29 (IST). The improvement for tolerance to inbreeding depression was more pronounced in the case of subtropical populations. Pool 32 (IST) registered an increase in inbreeding tolerance from 45.8% (C0) to 62.7% (C2). Similar results were obtained with Pop. 33 (IST) and Pop. 44 (IST). Preliminary field observations indicate a higher frequency of vigorous and more productive inbred lines from the advanced cycles compared with Cycle 0. These hybrid-oriented germplasm are available for distribution to our cooperators from 1991. Limited quantities of seed of these populations (200 seeds) are available upon request. We request that appropriate recognition be made of the source of the germplasm if it is used in the development of new cultivars or hybrids. Seed requests should be addressed to the corresponding author.

S. K. Vasal,* G. Srinivasan, and N. Vergara (8)

References and Notes

8. International Maize and Wheat Improvement Center (CIMMYT), Lisboa 27, Apdo. Postal 6-641, Mexico D.F. Mexico 06600. Registration by CSSA. Accepted 30 Sept. 1994. *Corresponding author.