Bianca matures early to medium early in western Oregon (approximately 22 to 26 August) and has moderately high yield potential. This hop is not intended for commercial production, although cones developing on sidearms in late summer could be suitable for brewing. Bianca's cones are of medium size (about 150 to 200 mg air dry) and are easy to pick. They can be dried in a small batch operation with a modified fruit dehydrator. The stem color is not as intense as that of its half-sister Sunbeam and sometimes appears as reddish-brown stripes. Bianca's soft resin content averages 7 to 8% alpha acids, 3.4% beta acids, a cohumulone of 20 to 28%, and an oil content of 0.6 to 1.0 mL 100 g⁻¹, similar to its female parent Saazer. The essential oil composition is similar to that of Saazer and is remarkable because of its relatively high content of humulene and farnesene.

Bianca has remained free of major hop viruses during four growing seasons near Corvallis, OR. Some downy mildew infection [caused by Pseudoperonospora humuli (Miyabe & Takah.) G.W. Wils.] was noticed on basal shoots early in the spring, but was controlled with fungicides registered for use on hops. No systemic downy mildew crown infection has been observed to date. Verticillium wilt (caused by various Verticillium species) has never been observed in this cultivar.

Due to its sensitivity to intense sunlight in late summer, it is recommended for semishaded locations, where attractive foliage throughout the growing season is desirable.

Virus-free plants of Bianca have been deposited in the Plant Germplasm System at the USDA Pacific Northwest Plant Germplasm Repository, Corvallis, OR, for permanent storage. Bianca is available for research purposes and for development and commercialization of new cultivars. For further information, contact:


References and Notes

Published in Crop Sci. 35:1708–1709 (1995).

Registration of ‘Giza 125’ Barley

‘Giza 125’ (Reg. no. CV-247, PI 583827) is a six-rowed spring barley (Hordeum vulgare L.) cultivar developed by the Barley Research Department, Agricultural Experiment Station, at Giza, Egypt, and released in October 1992. It was selected for drought resistance using the pedigree method from an F₃ population received from the International Center for Agricultural Research in Dry Areas (ICARDA). It originated from the cross ‘Giza 117’/‘Bahtem 52’/‘Giza 118’/FAO 86’. Single-plant selections were made in the F₄ generation and grown in head rows in the F₅ generation in the rainfed area of the northwest coast of Egypt under natural drought stress. The first yield trials of Giza 125 (with the line designation of LYT-23-90) under natural drought stress were conducted in 1989–1990 in the Barley Screening Nursery (BSN) in seven locations along the northwest coast and the northern Sinai Peninsula. Giza 125 was further evaluated in replicated preliminary multilocation yield trials (Local Barley Yield Trials), in which this line was superior in drought tolerance and yield, and exhibited stability of performance and good agronomic characters. Therefore, it was entered in Advanced Barley Yield Trials (ABYT). Subsequently, this line was included in large-scale experiments in farmers’ fields along with a check cultivar, Giza 123, and the farmer’s cultivar Giza 125, and was evaluated for grain yield and other yield characteristics in 20 different environments representing 3 yr of data (1990–1991 to 1992–1993) along the north coast area of Egypt. Giza 123, an Egyptian commercial cultivar, was used as the