REGISTRATION OF CULTIVARS

Registration of 'Joe Burton' Berseem Clover

'Joe Burton' berseem clover (Trifolium alexandrinum L.) (Reg. no. CV-131, PI 590944) was released in 1995 by the University of California Agricultural Experiment Station and Cooperative Extension Service. It is a vigorous winter cultivar developed from germplasm selected from 'Multicut' (1) for tolerance to several viruses. Joe Burton is suitable for use as a fall-sown green chop, silage, pasture, hay crop, cover crop, or green manure in the irrigated Central Valley and desert valleys of California, or as a spring-sown annual forage or cover crop in temperate zones. Its name was chosen to honor Dr. Joseph C. Burton (deceased), who, as vice president for research and development at the Nitragin Co. in Milwaukee, WI, was vitally instrumental in rhizobium development, essential for the success of berseem clover and other legumes for California.

Joe Burton is an annual, 40 to 55 cm tall at forage harvest time, with slightly hairy leaves that lack a watermark. Yellowish-white flowers form an elliptical dense head that averages 2.5 cm in length with each floret producing one seed. Seed weight is about 440 000 seeds kg⁻¹. In all these traits, it is similar to Multicut.

In May 1991, a virulent virus infection appeared in berseem clover seed fields in the Sacramento Valley and in test plots on the University of California Agronomy Farm at Davis. The symptoms were reddening and purpling of the foliage and stunted growth. Seed yields in commercial fields were decreased as much as 90%. In 1992, infection was not significant, but in both 1993 and 1994 infection was again widespread. In 1993, the dominant virus was identified as clover yellow vein potyvirus (CYVV). In 1994, four viruses were identified in single or mixed infections: CYVV, alfalfa mosaic virus, bean yellow mosaic virus, and cucumber mosaic virus.

In fall 1991, 80 plants were established in the field from seed of the bulk virus-tolerant Multicut survivors. In an adjacent plot, another 80 plants were established from seed of four of the most virus tolerant and vigorous individuals (20 plants each) representing the approximately 20% tolerant population of the same Multicut crop. At maturity, after open pollination with adequate isolation, seed was harvested and equal amounts combined from these two sets of plants. Our objective was to retain the base of genetic variability in the original Multicut from which Joe Burton was derived. The resulting seed (4 kg) was planted in November 1992 on the Agronomy Farm, University of California, Davis. The seed harvested from that planting was designated breeder seed.

Evaluation of the percentage of canopy having virus symptoms was conducted in field trials at Davis in 1993 and 1994. The 2-yr mean canopy infection rate was 10%, while the 'Bigbee' (2) infection rate was 84%, and Multicut was intermediate at 38%. The virus infection in Joe Burton was significantly lower (P < 0.05) than Bigbee and Multicut in both years. Two-year mean forage for fall planting in 1995 from Foundation Seed Certification Center, University of California, Davis. Kilogram amounts of seed are available for trial.

References and Notes


Appreciation is expressed to Craig Thomsen, Marc Vays, Harry Carlson, and Rick Delmas for their contributions in the development of Joe Burton.

Published in Crop Sci. 36:465 (1996).

Registration of ‘Yorktown III’ Perennial Ryegrass

‘Yorktown III’ perennial ryegrass (Lolium perenne cv. CV-179, PI 561710) was developed by Lofts Seed and released in August 1991. Germplasm obtained from the New Jersey Agricultural Experiment Station was used in the development of this cultivar. The experimental designation, Yorktown III, was selected during a breeding program to improve perennial ryegrass initiated by the New Jersey Agricultural Experiment Station in 1962. An extensive search was made to locate perennial ryegrass plants that had persisted and thrived in old lawns and under the environmental stresses, diseases, and insect problems of the mid-Atlantic region of the USA. Elite plants selected for the mid-Atlantic region of the USA. Elite plants were selected from old lawn-type turfs located in New Jersey and southeastern Pennsylvania, and from the mid-Atlantic region. Clonal evaluation and progeny tests conducted at the New Jersey Agricultural Experiment Station led to the development of improved turf-type cultivars.

Yorktown III was selected from the maternal clones. The parental germplasm of Yorktown III is a breeding program to improve perennial ryegrass initiated by the New Jersey Agricultural Experiment Station in 1962. An extensive search was made to locate perennial ryegrass plants that had persisted and thrived in old lawns and under the environmental stresses, diseases, and insect problems of the mid-Atlantic region of the USA. Elite plants were selected from old lawn-type turfs located in New Jersey and southeastern Pennsylvania, and from the mid-Atlantic region. Clonal evaluation and progeny tests conducted at the New Jersey Agricultural Experiment Station led to the development of improved turf-type cultivars.

Following varying cycles of phenotypic and genotypic selection, 13 clones containing the endophytic fungus Acremonium lolii were selected. The parental germplasm of Yorktown III originated from the New Jersey Agricultural Experiment Station in the mid-Atlantic region of the USA. Elite plants were collected from old lawn-type turfs located in New Jersey and southeastern Pennsylvania, and from the mid-Atlantic region. Clonal evaluation and progeny tests conducted at the New Jersey Agricultural Experiment Station led to the development of improved turf-type cultivars.

Latch, Christensen & Samuels were selected from five separate selections, 13 clones containing the endophytic fungus Acremonium lolii were selected. The parental germplasm of Yorktown III originated from the New Jersey Agricultural Experiment Station in the mid-Atlantic region of the USA. Elite plants were collected from old lawn-type turfs located in New Jersey and southeastern Pennsylvania, and from the mid-Atlantic region. Clonal evaluation and progeny tests conducted at the New Jersey Agricultural Experiment Station led to the development of improved turf-type cultivars.

Following varying cycles of phenotypic and genotypic selection, 13 clones containing the endophytic fungus Acremonium lolii were selected. The parental germplasm of Yorktown III originated from the New Jersey Agricultural Experiment Station in the mid-Atlantic region of the USA. Elite plants were collected from old lawn-type turfs located in New Jersey and southeastern Pennsylvania, and from the mid-Atlantic region. Clonal evaluation and progeny tests conducted at the New Jersey Agricultural Experiment Station led to the development of improved turf-type cultivars.

Following varying cycles of phenotypic and genotypic selection, 13 clones containing the endophytic fungus Acremonium lolii were selected. The parental germplasm of Yorktown III originated from the New Jersey Agricultural Experiment Station in the mid-Atlantic region of the USA. Elite plants were collected from old lawn-type turfs located in New Jersey and southeastern Pennsylvania, and from the mid-Atlantic region. Clonal evaluation and progeny tests conducted at the New Jersey Agricultural Experiment Station led to the development of improved turf-type cultivars.