Registration of ‘H1330’ Cotton

‘H1330’ cotton (Gossypium hirsutum L.) (Reg. no. CV-108, PI 583875) was developed by the Arkansas Agricultural Experiment Station, where it was tested as 8518-18 and Ark. 818. In 1992, marketing rights to this genotype were exclusively licensed to Jacob Hartz Seed Co. of Stuttgart, AR, through a competitive bid process.

H1330 was derived from a cross of ‘DES 119’ (3) and Miscot 7803-52 (2). Selection of the line was accomplished using procedures previously described (1). The line was specifically selected for increased tolerance to cold temperature germination, resistance to bacterial blight [caused by Xanthomonas campestris pv. malvacearum (Smith) Dye] and seedling disease (caused by Rhizoctonia solani Kühn, Pythium spp., and other organisms), and development of secondary roots.

H1330 and DES 119 were compared in 42 tests conducted in Arkansas, central Texas, Louisiana, Mississippi, Georgia, South Carolina, and North Carolina from 1988 through 1994. Across all experiments, lint yield, lint fraction, maturity, fiber length, and fiber strength of the two cultivars were essentially equal. H1330 averaged 0.2 fiber micronaire units lower than DES 119. Plant structure is similar for both cultivars, but H1330 displays less leaf pubescence.

In contrast to DES 119, H1330 is resistant to all known U.S. races of the causal agent of bacterial blight. Resistance of the two cultivars to the bollworm [Helicoverpa zea (Boddie)] and tobacco budworm [Helicoverpa virescens (F.); syn. Heliothis virescens] complex was equal at three sites in the 1991 Regional Bollworm/Budworm Tests, where genotypes were evaluated and absence of worm pressure. Using the techniques of al. (4), similar levels of resistance to tarnished plant bug [Lygus lineolaris (Palisot de Beauvois)] were found for H1330 and DBS 119. In the Regional Cotton Fusarium Wilt Tests, resistance of H1330 to fusarium wilt [caused by Fusarium vasinfectum:Fr. f. sp. vasicola (Atk.) W.C. Snyd. & H.N. Hans.] was equal to the resistant check.

Breeder seed will be maintained by the Arkansas Agricultural Experiment Station. Application for cultivar protection has been made under the U.S. Plant Variety Protection Act.

References and Notes

Published in Crop Sci. 36:183 (1996).

Registration of ‘Ohio FG1’ Soybean

‘Ohio FG1’ soybean [Glycine max (L.) Merr.] (Reg. no. CV-344, PI 584469) was developed by the Ohio Agricultural Research and Development Center of The Ohio State University (OARDC-OSU). It was released 1 Aug. 1994 as a specialty cultivar for production of tofu and other soy foods.

Ohio FG1 is an F4-derived line, originally designated HS90-3508, from the cross ‘LS301’ × HS84-6247 (2). The cross was made in the summer 1987 at Columbus, OH. The parent line HS84-6247 derives from ‘Zane’ × HW79149 (5,6). Ohio FG1 was developed by early-generation testing. The F2-derived line HS88-8318 was tested in Ohio from 1988 to 1990. Ohio FG1, which derived from an F4 plant of HS88-8318, was tested in multiple Ohio locations from 1991 to 1994 (4).

Ohio FG1 has purple flowers, gray pubescence, brown pods, and dull yellow seedcoats with yellow hila. It is a Maturity Group III (relative maturity 3.2) indeterminate cultivar and is generally adapted as a full-season cultivar from 41° to 43° N lat. In Ohio tests (1991–1994), seed yield of Ohio FG1 was 15% greater than ‘Vinton 81’. compared with the grain-type cultivar Resnik (3).

Ohio FG1 has purple flowers, gray pubescence, brown pods, and dull yellow seedcoats with yellow hila. It is a Maturity Group III (relative maturity 3.2) indeterminate cultivar and is generally adapted as a full-season cultivar from 41° to 43° N lat. In Ohio tests (1991–1994), seed yield of Ohio FG1 was 15% greater than ‘Vinton 81’. compared with the grain-type cultivar Resnik (3).

Breeder seed of Ohio FG1 will be maintained with the cooperation of Ohio Foundation Seeds. Breeder seed for research purposes can be obtained from the corresponding author.

References and Notes

Published in Crop Sci. 36:183 (1996).