Registration of 'Cisne' soybean

'Cisne' soybean [Glycine max (L.) Merr.] (Reg. no. CV-348, PI 593256) was developed by the Illinois Agricultural Experiment Station at the University of Illinois and released in August 1995. This is a Maturity Group IV cultivar, released because of its resistance to phytophthora rot (Races 1 and 7) (caused by Phytophthora sojae M.J. Kaufmann & J.W. Gerdemann) and higher yield compared with cultivars of similar maturity.

'Cisne' originated as an F4-derived line from the cross 'Burlison' × 'Asgrow A3733' made at the Illinois Agricultural Experiment Station (3). Asgrow A3733 is a selection from Elf × 'Asgrow A3127' (2). Asgrow A3127 is a selection from 'Williams' × 'Essex' (1,4). The original cross was made in the field in the summer of 1987, and the F1 generation was grown in the field at Urbana, IL, in 1988. The F2, F3, and F4 generations were advanced by a modified single-seed-descent procedure in Puerto Rico during the winter of 1988–1989 and at Urbana in the summer of 1989. The F5 generation was grown as plant rows in 1990. Single plant rows were selected, composited, and evaluated in replicated yield trials in Illinois in 1991 and 1992. 'Cisne' was evaluated as LN90-4129 in Preliminary Test IVA in 1993 and in Uniform IV Test in 1994 of the Uniform Soybean Tests—Northern Region Test (5).

'Cisne' is indeterminate Group IV maturity (relative maturity 4.4) cultivar, similar to 'Spencer' (6). It is best adapted to 38 to 41° N lat. Compared with Spencer, 'Cisne' averaged 2% higher seed yield, 25 mg seed⁻¹ higher seed weight, 8 g kg⁻¹ higher seed protein concentration, and 12 cm shorter plant height. 'Cisne' is similar to Spencer in seed quality scores and seed oil concentration.

'Cisne' has purple flowers, tawny pubescence, tan pods at maturity, and dull yellow seeds with black hila. 'Cisne' has RsP2 and RsP3 genes for resistance to phytophthora rot (Races 1 and 7). 'Cisne' is susceptible to brown stem rot (caused by Phialophora gregata (Allington & D.W. Chamberlain) W. Gams; it is moderately resistant to fusarium wilt syndrome [caused by Fusarium solani (Mart.) Sacc.]

Application has been made for U.S. plant variety protection for 'Cisne', permitting only production of Foundation seed beyond Breeder seed. Seed of 'Cisne' is being increased by Illinois Foundation Seeds, Inc., in 1995 and is available to qualified certified seed producers in Illinois for 1996 planting. A small sample of seed of 'Cisne' may be obtained for research purposes for at least five years from the authors.


References and Notes

5. Wilcox, J.R. 1994. The uniform soybean test—Northern Region Test, USDA-ARS, West Lafayette, IN.
7. Dept. of Crop Sciences, Univ. of Illinois, 1102 West Green St., Champaign, IL 61801, and P.A. Stephens, Pioneer Hi-Bred Int., 350th Rd., Suite 102, LaSalle, IL 61310. Crop Sciences Research supported by the Soybean Checkoff Board. Registration by CSSA, the American Soybean Association, and the Illinois Soybean Association.

*Corresponding author (Email: cnickell@uiuc.edu)

Published in Crop Sci. 36:1410 (1996).

Registration of 'Macon' Soybean

'Macon' soybean [Glycine max (L.) Merr.] (Reg. no. CV-350, PI 593258) was developed by the Illinois Agricultural Experiment Station at the University of Illinois and released in August 1995. This is a Maturity Group III cultivar, released because of its higher yield compared with cultivars of similar maturity.

'Macon' originated as an F4-plant selection from the cross 'Sherman' × 'Resnik' made at the Illinois Agricultural Experiment Station (1,2). The original cross was made in the field in the summer of 1986, and the F1 generation was grown in the field in 1987. The F2, F3, and F4 generations were advanced by a modified single-seed-descent procedure in Puerto Rico during the winter of 1987–1988 and at Urbana, IL, in the summer of 1988. The F5 generation was grown as plant rows in 1989. Single plant rows were selected, composited, and evaluated in replicated yield trials in Illinois in 1990 and 1991. 'Macon' was evaluated as LN90-593258 in Preliminary Test IIIA in 1992, and in Uniform III Test in 1993–1994 of the Uniform Soybean Tests—Northern Region Test (3).

'Macon' is a Maturity Group III cultivar, released because of its higher yield, 25 mg seed⁻¹ higher seed weight, 8 g kg⁻¹ higher seed protein concentration, and 12 cm shorter plant height. 'Macon' is similar to 'Spencer' (6). It is best adapted to 38 to 41° N lat. Compared with 'Spencer', 'Macon' averaged 2% higher seed yield, 25 mg seed⁻¹ higher seed weight, 8 g kg⁻¹ higher seed protein concentration, and 12 cm shorter plant height. 'Macon' is similar to 'Spencer' in seed quality scores and seed oil concentration.

'Macon' has purple flowers, tawny pubescence, tan pods at maturity, and dull yellow seeds with black hila. 'Macon' has RsP2 and RsP3 genes for resistance to phytophthora rot (Races 1 and 7). 'Macon' is susceptible to brown stem rot (caused by Phialophora gregata (Allington & D.W. Chamberlain) W. Gams; it is moderately resistant to fusarium wilt syndrome [caused by Fusarium solani (Mart.) Sacc.]

Application has been made for U.S. plant variety protection for 'Macon', permitting only Foundation and Certified classes beyond Breeder seed. Seed of 'Macon' is being increased by Illinois Foundation Seeds, Inc., in 1995 and is available to qualified certified seed producers in Illinois, Iowa, Kansas, Missouri, and Nebraska for planting in 1995. Foundation seed will be available to qualified certified seed producers in Illinois and Missouri for planting in 1996. A small sample of seed of 'Macon' may be obtained for research purposes for at least five years from the authors.


References and Notes

5. Wilcox, J.R. 1994. The uniform soybean test—Northern Region Test, USDA-ARS, West Lafayette, IN.
7. Dept. of Crop Sciences, Univ. of Illinois, 1102 West Green St., Champaign, IL 61801, and P.A. Stephens, Pioneer Hi-Bred Int., 350th Rd., Suite 102, LaSalle, IL 61310. Crop Sciences Research supported by the Soybean Checkoff Board. Registration by CSSA, the American Soybean Association, and the Illinois Soybean Association.

*Corresponding author (Email: cnickell@uiuc.edu)

Published in Crop Sci. 36:1410 (1996).