first-generation European corn borer resistance, average resistance to gray leaf spot, and maintains good plant health until physiological maturity. Maturity classification is AES800.

B105 was developed from BSSS after nine cycles of reciprocal recurrent selection based on half-sib families (5). The other population in the reciprocal recurrent selection was Iowa Corn Borer Synthetic No. 1 (BSCB1). The line was derived by single-seed descent from BSSS(R)C9 [BSSS(R)C9-5] (6). At the S7 generation \(F = 0.992 \), the line was included in breeding and in Mo17 topcross nurseries. On the basis of testcross performance with Mo17, the line was included in a crossing nursery to produce single-cross seed with B90, B97, and Mo17. In single-cross trials conducted in 1991 (10 locations), 1992 (10 locations), 1993 (9 locations), 1994 (9 locations), and 1993 NCR-167 700-800 Regional Trial (7 locations), yield of the B105 crosses was either equal to or significantly greater than those of B73 \(\times \) Mo17, experiment mean, and mean of commercial checks. Grain moisture of B105 single crosses was 10 to 20 g kg\(^{-1}\) greater than that of B73 \(\times \) Mo17, whereas root and stalk strength and ear attachment were similar to those of B73 \(\times \) Mo17.

Date of flowering and plant and ear heights of B105 are similar to those of B73. Adequate pollen is produced, and silk emergence usually coincides with pollen shed. Silk emergence, however, is delayed if heat and drought stress occur at flowering, and viable pollen may not be available for self-pollination. B105 has ears with 14 to 16 rows of yellow dent kernels on red cobs. B105 has average root and stalk strength, average resistance to first-generation European corn borer, above-average resistance to gray leaf spot, and average grain yield. Because of its tendency to go barren under stress, B105 does not have potential in pedigree selection programs for improved female parents. Maturity classification is AES800.

B106 was developed from a Lancaster Sure Crop population and was one of the lines used to form BS26 (7). The line was evaluated at the \(S_2 \) \(F = 0.75 \) generation in two replications at four environments and in cross with B73 \(\times \) B84 at six environments (8). On the basis of \(S_2 \) line and \(S_2 \) testcross performance, the line was advanced ear-to-row by seven generations of self-pollination in a breeding nursery and included in a crossing nursery to produce single-cross seed with B73, B84, and B90. Yields trials conducted in 1992 (4 locations), 1993 (13 locations), and 1994 (12 locations) indicated that B73 \(\times \) B106 is either equal to \((10.15 \text{ t ha}^{-1} \text{ for B73 } \times \text{ B106 vs. } 10.24 \text{ t ha}^{-1} \text{ for B73 } \times \text{ Mo17 in 1994}) \) or greater than \((6.41 \text{ t ha}^{-1} \text{ for B73 } \times \text{ B106 vs. } 4.98 \text{ t ha}^{-1} \text{ for B73 } \times \text{ Mo17 in 1993}) \) those of B73 \(\times \) Mo17, the experiment mean, and the commercial check mean. B73 \(\times \) B106 averages 20 g kg\(^{-1}\) more grain moisture and 7% more root lodging than does B73 \(\times \) Mo17. Root strength seems to be a consistent weakness of B106 as a line and in crosses.

Flowering time for B106 is similar to B73, Mo17, and B104. Pollen production is above average, and silk emergence is coincident with pollen shed. Ears have 10 to 12 rows of yellow dent kernels on red cobs. B106 has average grain yield. B106 has good levels of resistance to first-generation European corn borers, avg.

References and Notes

2. CIMMYT. 1981. CIMMYT report on maize breeding in El Batán, Mexico.
9. A.R. Hallauer and P.R. White, Dep. of Agronomy, Iowa State Univ., Ames, IA 50011; K.R. Lamkey, USDA-ARS Genebank, Ames, IA 50011. Joint contribution from the Iowa Agriculture and Home Economics Experiment Station and is distributed (100 seeds per request) by the Committee for Agricultural Development, 117 Curtiss Hall, Iowa State University, Ames, IA 50011.

Registration of Tift 93 Pearl Millet

Tift 93 pearl millet \([P. \) *pennisetum* L. \(\times \) \(A. \) *purpureum* Schumacher interspecific hybrid] \(2n = 6x = 42 \) was released cooperatively by the USDA-ARS and the University of Georgia Coastal Plain Experiment Station in April 1995.

Tift 93 was derived from a pollen-shedding parental line, 89 plants of a pearl millet cytoplasmic–nuclear male sterile (cms) cross, Tift 23D\(_2A_1 \) \(\times \) MN22 \(\times \) Tift 93. This hybrid that produces up to twice as much commercial hybrid seed as is produced on most standard pearl millet inbreds. A\(_2 = 42 \) Schumacher interspecific hybrid was selected in the fifth generation of selfing and from morphologically uniform progenies. Tift 93 has been selfing six additional generations. Tift 93 \(2n = 6x = 42 \) is a dwarf inbred that averages 122 cm in height at flowering approximately 71 and 85 d after planting dates, respectively. Tift 93 has brownish-grey seeds, and it sheds abundant pollen. The main advantage of Tift 93 is that it can be used to produce a cytoplasmic–nuclear F\(_1 \) hybrid that produces up to twice as much seed as is produced on most standard pearl millet inbreds.

Seed of this parental line will be maintained in perpetuity by the USDA-ARS. Genetic material of this release will be deposited in the Genetic Resources Intersociety Coordinating Committee (GIRCC) Data Base.

Published in Crop Sci. 37:1405-1406 (1997).