Registration of ‘Quickstand’ Bermudagrass

‘Quickstand’ bermudagrass [Cynodon dactylon (L.) Pers.] (Reg. no. CV-31, PI 557553) was released jointly in 1993 by the USDA-NRCS (formerly SCS) (Technology: Ecological Sciences Division), the USDA-ARS, and the University of Kentucky Agricultural Experiment Station. Quickstand was released for its combination of winterhardiness, rapid rates of establishment and spread and lower incidence of spring dead spot (caused by several ectotrophic, root-rotting fungi, including Ophiostoma herpotricha (Fr.:Fr.) J.C. Walker and Leptosphaeria korrae J.C. Walker & A.M. Smith in Kentucky, and elsewhere also including L narmari J.C. Walker & A.M. Smith and Gaemumonmyces graminis (Sacc.) Arx & D. Olivier var. graminis J.C. Walker). The name Quickstand was chosen to commemorate its source, an old stand of bermudagrass of unknown origin in Field 2 at the Quicksand, KY, Plant Material Center (PMC), and also to denote its rapid establishment and rate of spread. Quickstand was tested in these field studies as RS-1, Quicksand common, QSC, and accession 9034348.

Quickstand has been evaluated in numerous field plantings since 1980 by the PMC and the University of Kentucky. It was entered in the 1986 National Bermudagrass Test and evaluated in 11 states representing 18 sites (2). Replicated university and USDA-ARS tests of Quickstand were conducted in Kentucky, West Virginia, Georgia, Illinois, and Oklahoma. Quickstand is a tetraploid (2n = 4x = 36) and does not appear to produce viable pollen. Vegetative sprigs are used to propagate the cultivar. Quickstand has a relatively low growth habit, approximately 12 cm height at maturity, making it more suitable for turf and grazing purposes than for hay production.

Quickstand is adapted to plant hardiness Zone 6a, an area for which few turf-type bermudagrass cultivars are available. Growth chamber experiments demonstrated that Quickstand had greater growth rates at three temperature regimes ranging between 18 and 35°C than other bermudagrasses collected from the Appalachian region (3). Quickstand is vigorous, with medium-green leaves and moderately fine texture. The turf quality of Quickstand is similar to ‘Vamont’, but it is finer in texture. In a study to N and P fertilization, Quickstand exhibited the ability to spread rapidly, producing significantly more stolons than other entries. The yield of Quickstand was 106% greater than ‘Midland’. Quickstand was the most responsive of seven bermudagrasses included in this study to N and P fertilization.

Breeder sprigs are maintained at the Plant Materials Center, Quicksand, KY. A foundation field is maintained at the University of Kentucky’s Spindletop Farm at Lexington, KY. Sprigs are available from the Kentucky Foundation Seed Project from either the breeder or foundation field source.

T. D. PHILLIPS,* D. P. BELESKY, AND A. J. POWELL, JR. (5)

References and Notes
5. T.D. Phillips and A.J. Powell, Jr., Dep. of Agronomy, Lexington, KY 40546-0091; D.P. Belesky, Airport Rd., P.O. Box 400, Beaver, WV 25813. This paper is in connection with a project of the Dep. of Agronomy of the University of Kentucky, Lexington, KY 40546. Published in Crop Sci. 37:1674 (1997).

Acknowledgment is given to several former employees of the PMC at Quicksand, KY (John Reid, Laura Rice) for their work with preliminary evaluations and the origin of Quickstand bermudagrass.

REGISTRATION OF GENETIC STOCKS

Registration of a Red Clover Genetic Stock Pool

A pool of diploid red clover (Trifolium pratense L.) genetic marker stocks (L38-1784) (Reg. no. GS-11, PI 595893) was released by the Kentucky Agricultural Experiment Station in 1996. This pool was developed by bee crossing in isolation 10 plants of each of the following red clovers: white flower-white seed, crimson flower, no mark leaflets, white stem, sun-red stem, cornucopia leaflet, multiple head, multiple cotyledon (1); rudimentary corolla, long stem, multiple cotyledon (2); split leaflet (3); and long petiole (4). Linkage relationships among these characters are unknown. Seeds were bulked without regard to amounts of seed produced. The first synthetic generation expresses mainly dominant genes, and a second generation is necessary for maximum expression of recessive genes. This pool of gene markers should allow the development of multiple recessive gene marker stocks and other unique combinations useful for genetic investigations. Up to 20 seeds of the first synthetic generation of this genetic stock may be obtained upon written request and agreement to return increased seeds to the originator. Request seed from the Department of Agriculture, University of Kentucky, Lexington, KY 40546-0091.

References and Notes

Published in Crop Sci. 37:1674 (1997).