medium-loose head types that discourage damage by the corn earworm [Helicoverpa zea (Boddie)], and GT-IR6 also has excellent panicle exsertion.

The three germplasm lines are similar to previous releases in their reaction to leaf diseases and sustain less leaf-feeding damage by the fall armyworm (1.5 vs. 1.9). GT-IR7 demonstrates resistance to the sorghum midge that is equivalent to previous releases (1.70 vs. 1.75), while midge ratings of GT-IR6 and GT-IR8 are slightly higher, but have significantly more resistance than the commercial hybrid checks (<3.0 vs. >5.0). Replicated experiments of test crosses with related testers, over a 3-yr period, produced yields that were 65 to 75% of the average for commercial hybrids and yields of GT-IR6 and GT-IR7 test crosses outyielded those of previous releases by more than 10%.

Breeder seed of these germplasm lines will be maintained by the author and can be obtained in small quantities upon request. It is requested that appropriate recognition be made of the source of these germplasm lines when they contribute to the development of a line or hybrid.

N. W. WIDSTROM* (4) 

References and Notes
4. N.W. Widstrom, USDA-ARS, P.O. Box 748, Tifton, GA 31793. Registration by CSSA. Accepted 28 Feb. 1998. *Corresponding author (nwidstro
@tifton.cpes.peachnet.edu).

Registration of ICMP 94001 Pearl Millet Germplasm

ICMP 94001 pearl millet [Pennisetum glaucum (L.) R. Br.] (Reg. no. GP-37, PI 597748) is a mass-selected Cycle-1 bulk of an extra-early-maturing and nearly daylength-insensitive maintainer (B) composite (EEBC). ICMP 94001 was developed for use as parental germplasm for breeding early-maturing maintainer (B) lines of the A1 and A4 cytoplasmic-nuclear male-sterility systems in pearl millet. It was released in 1996 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India. ICMP 94001 was tested under the designation EEBC C1.

EEBC is based on Iniadi germplasm accessions originating from the Togo-Ghana-Benin area of western Africa (1). Iniadi germplasm is characterized by relatively daylength-insensitive early flowering (70 to 85 d to maturity), short grain-filling period (23 to 43 d), low-tillering (1 to 2 tillers plant"²), cent bulbs fixed at a grid of 3 by 5 m at the height of 1.5 m above the soil surface. The S₂ progenies were derived from 188 Iniadi accessions. These S₂ progenies involve in the first random mating were crossed by hand in a disease nursery, with each time. ICMP 94001 was developed by bulk of EEBC (EEBC CO) and 13% less than the earliest-maturing commercial grain hybrid in India, HHB 67, and had a mean plant height of more than HHB 67). ICMP 94001 and HHB 67 had normal daylengths of 13.5 h during the 1994 rainy season and 14.7 h during the 1995 dry season, mean 50% flowering date of ICMP 94001 was 37 d, compared with 39 d for HHB 67. ICMP 94001 had 8% disease incidence, compared with 41% incidence for HHB 67 when inoculated with Patancheru isolate. ICMP 94001 had 11% incidence and HHB 67 had 41% inoculated with Mysore isolate.

ICMP 94001 was developed to serve as a pool of parental materials for breeding B-lines flowering in <40 d. The S₂ progenies used to constitute this composite is known to contain a high frequency of plants with sterility maintainer gene or genes for the A1 system of cytoplasmic male sterility (2). An evaluation of 160 topcross hybrids obtained by crossing EEBC C0 onto ICMA-1 (81A1) indicated that the plants were largely sterile, with 28% setting no or 1% seed under selfing. A similar evaluation of hybrid plants developed onto 81A4 indicated that 88% of the plants were largely sterile, with 41% setting no seed and 5% seed under selfing. Assuming that no major difference in sterility maintainer gene or genes has occurred, the C0 bulk to the C1 bulk, ICMP 94001 could be used to develop B-lines of both the A1 and the A4 male sterility systems. Seed of ICMP 94001 will be maintained by ICRISAT, Patancheru, Andhra Pradesh, India. Small quantities will be available upon request.

K. N. RAI,* F. R. BIDINGER, K. HUSSAIN SAHIB, AND A. S. RAO (3) 

Published September, 1998