ne (Syd. & P.)] and leaf scald [caused by *Xanthomonas albiline- ans* (Ashby)] in the field. These clones were generally erect and should be suited to harvesting by the whole-stalk mechanical harvesters.

Seed cane of all 12 germplasm clones will be maintained for a minimum of 5 years by the USDA-ARS at the Sugarcane Research Unit, Houma, LA, for research and breeding purposes.

W. H. White,* D. M. Burner, B. L. Legendre, and J. D. Miller (7)

References and Notes

Registration of NMCOMP81-BAA1 Alfalfa Germplasm

NMCOMP81-BAA1 alfalfa (*Medicago sativa* L.) (Reg. no. GP333, PI 596595) germplasm was developed by the New Mexico Agricultural Experiment Station and released 8 April 1996. NMCOMP81-BAA1 has demonstrated high yield potential in variety trials conducted at two southern New Mexico locations during at least 3 years. It also possesses moderate resistance to blue alfalfa aphid (*Acyrthosiphon kondoi* Shinji) and low resistance to spotted alfalfa aphid (*Theroisaphis maculata* (Buckton)).

NMCOMP81-BAA1 is a 35 clone synthetic population that originated from the following cultivars and germplasms: ‘New Mexico Common’, ‘Mesilla’, ‘UC Cibola’, ‘Beltville-6’, ‘Baron’, ‘Turkistan’, and ‘El Unico’. The contribution of major germplasm sources to NMCOMP81-BAA1 are as follows: Chilean (54%), Turkistan (18%), African (11%), Indian (7%), and Flemish (11%), with minor contributions from *M. varia*, Peruvian, and ‘Ladak’ (>0.5% each) and unknown (8%).

Potential users of this germplasm are notified that alfalfa aphid resistance tests used transitional procedures different from those reported by Berberet et al. (1) were higher than current accepted procedures (2–3 Aphids rather than a maximum of 2), and the infestation period (25 d, rather than 21). A further complication in that the unknown inclusion of a new blue alfalfa aphid, BAOK90 (2). All three factors combined to result in the resistant check (‘CUF 101’) exhibiting lower levels of resistance than normal (<30%). Current test procedures (using the infestation rates and period) reject tests when the resistant check (CUF 101) exhibits resistance levels less than 40% of the approximate expected resistance level for CUF 101. An increase in resistance similar to that observed for NMCOMP81-BAA1 under current procedures is unknown. The unadjusted percentage of seedlings exhibiting resistance after infestation with aphids collected in Houma in 1989 were, for blue alfalfa aphid: NMCOMP81-BAA1 = 26%, CUF 101 (R) = 29%, and ‘Arc’ (S) = 5% (R = resistant and S = susceptible). For spotted alfalfa aphid, NMCOMP81-BAA1 = 16%, ‘Kanza’ (R) = 26%, and Team (S) = 0.4%.

NMCOMP81-BAA1 has demonstrated stable yields equal to that of the highest yielding entry at two locations in southern New Mexico over a minimum of three years. The fall dormancy of NMCOMP81-BAA1 has not been tested, but parental pedigrees indicate that it should be semidormant. Resistance to other insects or diseases has not been determined.

Seed stock of NMCOMP81-BAA1 will be maintained by the Agronomy and Horticulture Dep., New Mexico State University, Las Cruces, NM 88003. One hundred and fifty seeds of Syn-1 seed stock will be provided for research and breeding purposes upon written request to the corresponding author. It is requested that appropriate recognition of the source be given when this germplasm contributes to the development of a cultivar or germplasm.

J. A. Henning, C. G. Currier, M. S. Townsend, I. M. Ray,* and B. A. Melton (3)

References and Notes
