

Registration of ‘Coronado’ Tall Fescue

‘Coronado’ tall fescue (*Festuca arundinacea* Schreb.) (Reg. no. CV-64, PI 587184) was released by Pure Seed Testing, Inc., Hubbard, OR, in September 1993. Germplasm obtained from the New Jersey Agricultural Experiment Station (NJAES) was used in the development of Coronado. Coronado was tested as PST-RDG. The first certified seed was produced in 1995.

Coronado tall fescue is an advanced-generation synthetic cultivar selected from the maternal progenies of 12 plants. During May 1990, 136 plants were selected from three breeding composites at the Rutgers University Plant Science Research Farm at Adelphia, NJ. These were designated R (44 plants), D (69 plants), and G (23 plants). Selection criteria were attractive appearance, moderately low growth profile, freedom from disease, and dark green color. The R, D, and G breeding composites trace their lineage to plants selected from or related to ‘Rebel’ (1) and to plants selected by NJAES turfgrass breeders from old turfs in Alabama, Georgia, Idaho, Kansas, Kentucky, Maryland, Missouri, Mississippi, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Texas, and Virginia from 1962 to 1982. These 136 plants were transferred to an isolated crossing block, designated RDG, at North Brunswick, NJ, immediately prior to anthesis and allowed to interpollinate during the late spring of 1990. Seed was harvested from 12 plants exhibiting excellent floret fertility. These 12 plants, the maternal parents of Coronado, trace their origins to four sources. Three trace their maternal origin to a plant, infected with the fungal endophyte *Neotyphodium coenophialum* (Morgan-Jones & Gams) Glenn, Bacon, Price & Hanlin (syn. *Acremonium coenophialum*), that was collected from an old turf in Athens, GA, in 1977. Five trace their maternal origin to an endophyte-free plant collected in eastern North Carolina in 1975. One endophyte-free parent traces its maternal origin to ‘Apache’ (2). The other three parents, which were endophyte-infected, trace their maternal lineage to a breeding composite containing plants from a number of different collections and from Rebel.

Seed from the 12 maternal parents harvested in the RDG crossing block was used to establish an isolated 7040-plant nursery near Hubbard in September 1990. Offtype plants were removed from this nursery, prior to anthesis, to increase uniformity. Selection criteria were high number of reproductive tillers, freedom from disease, dark green color, and low growth profile. The remaining plants were allowed to interpollinate. During the summer of 1991, 1181 endophyte-infected plants were harvested as the breeder seed of Coronado.

Coronado tall fescue was developed specifically for turf uses, including lawns and sports fields. Coronado has performed well in shade and under low-maintenance conditions, which should make it well adapted for home lawns, parks, cemeteries, and golf course roughs. Coronado is a very dark green cultivar that forms a low-growing turf with high density and uniformity. It has shown excellent turf performance in trials across the USA.

Coronado has exhibited a high level of tolerance to gray leaf spot, caused by *Pyricularia grisea* (Cooke) Sacc. (3). It also has shown good tolerance to net blotch (caused by *Pyrenophora graminea* (Pers.) Pers.:Pers.) and for other turf-type tall fescue cultivars, or in mixtures containing up to 5% Kentucky bluegrass adapted, as a monostand, in blends with other turf-type tall fescue cultivars, or in mixtures containing up to 5% Kentucky bluegrass.

‘Coronado’ tall fescue was developed specifically for turf uses, including lawns and sports fields. Coronado has performed well in shade and under low-maintenance conditions, which should make it well adapted for home lawns, parks, cemeteries, and golf course roughs. Coronado is a very dark green cultivar that forms a low-growing turf with high density and uniformity. It has shown excellent turf performance in trials across the USA.

Coronado has exhibited a high level of tolerance to gray leaf spot, caused by *Pyricularia grisea* (Cooke) Sacc. (3). It also has shown good tolerance to net blotch (caused by *Pyrenophora graminea* (Pers.) Pers.:Pers.) and for other turf-type tall fescue cultivars, or in mixtures containing up to 5% Kentucky bluegrass adapted, as a monostand, in blends with other turf-type tall fescue cultivars, or in mixtures containing up to 5% Kentucky bluegrass.

The 36 parental clones of NJFD were selected after three to nine cycles of selection. Small quantities of seed for research purposes will be available from the corresponding author.

CRYSTAL A. ROSE-FRICKER, WILLIAM A. MEYER, AND C. REED FUNK (4)

References and Notes


Published in Crop Sci. 39:286 (1999).

Registration of ‘Tomahawk’ Tall Fescue

‘Tomahawk’ tall fescue (*Festuca arundinacea* Schreb.) (Reg. no. CV-65, PI 550709) was released by Pure Seed Testing, Inc., Hubbard, OR, in September 1989. Germplasm obtained from the New Jersey Agricultural Experiment Station (NJAES) was used in the development of Tomahawk. Tomahawk was tested as PST-5DX. The first certified seed was produced in 1990.

The parents of Tomahawk were selected from NJFD populations, NJFD and NJED. NJFD is a 36-parent population. The parental germplasm traces its lineage from or related to Tomahawk (1) and to plants selected from or related to Rebel. Single-plant progenies were evaluated in closely mowed turf trials and spaced-plant nurseries. NJAES for attractiveness, stress tolerance, seed production, and disease resistance. The most promising plants were allowed to interpollinate or were topcrossed with plants selected from or related to Rebel. Single-plant progenies were evaluated in closely mowed turf trials. Tillers seed from the 36 parental clones of NJFD were used to initiate new cycles of plant production.

The 36 parental clones of NJFD were selected after nine cycles of selection, including three cycles of recurrent selection. Small quantities of seed for research purposes will be available from the corresponding author.

CRYSTAL A. ROSE-FRICKER, WILLIAM A. MEYER, AND C. REED FUNK (4)

References and Notes


Published in Crop Sci. 39:286 (1999).